Non-Invertible Symmetry and Entanglement Entropy

Based on arXiv <u>2409.02159</u> and <u>2409.02806</u> (PRL) with Brandon C. Rayhaun and Yunqin Zheng

Yichul Choi (IAS)

Plan of the Talk

- 1. Review: Entanglement Entropy and BCFT [Ohmori-Tachikawa '14; ...]
- 2. Symmetries and Conformal Boundaries in 2D
- 3. "Topological Holography" for Conformal Boundaries
- 4. Non-Invertible Symmetries and Entanglement Entropy

Entanglement Entropy and BCFT

Entanglement Entropy in 2D CFT

- Strictly speaking, the expression " $\rho_A = \text{Tr}_{\mathcal{H}_{A^c}} |\Omega\rangle \langle \Omega|$ " does not make sense in continuum field theories.
- The Hilbert space does not factorize: $\mathcal{H} \neq \mathcal{H}_A \otimes \mathcal{H}_{A^c}$.
- Relatedly, the entanglement entropy naively diverges, and requires regularization.
- We follow [Ohmori-Tachikawa '14], and will introduce explicit conformal boundary conditions at the entanglement cuts. [Yang Zhou's talk]

- changing" Euclidean path integral.
- The path integral defines a map $\iota: \mathcal{H} \to \mathcal{H}_A \otimes \mathcal{H}_{A^c}$.

• To obtain an explicitly factorized Hilbert space, we consider a "topology-

• At the semicircles, we impose conformal boundary conditions B_1 and B_2 .

Conformal Boundaries and EE

L B_1

- state $|\Omega\rangle$ by $\rho_A \equiv \text{Tr}_{\mathcal{H}_{AC}} \iota |\Omega\rangle \langle \Omega | \iota^{\dagger}$.
- and a slit between them excised.

• We define the reduced density matrix of the single interval A of the vacuum

• ρ_A is obtained by the Euclidean path integral on a plane with two small disks

Conformal Boundaries and EE

- By performing a conformal transformation $z \mapsto \log(z) \log(L z)$, we map to a cylinder (with a small slit excised) with circumference 2π and length ℓ .
- The reduced density matrix is determined by the open string Hamiltonian:

$$\rho_A = \frac{e^{-2\pi H_{open}}}{\operatorname{Tr} e^{-2\pi H_{open}}} \quad \text{where } H_{open} = \frac{\pi}{\mathscr{C}} \left(L_0 - \frac{c}{24} \right).$$

Conformal Boundaries and EE

the interval A, [cf. Nathan Benjamin's talk]

$$S_A = \frac{c}{3} \log \frac{L}{\epsilon} + \frac{c}{3} \log \frac{C}{\epsilon}$$

- Here, $g_i = \langle 0 | B_i \rangle$ are the g-functions of conformal boundaries B_i .
- $\log g_i$ is also known as the Affleck-Ludwig boundary entropy.

$$e^{-2\pi H_{open}}$$

 $\rho_A = \frac{1}{\mathrm{Tr}e^{-2\pi H_{open}}}$

• By using the explicit form of ρ_A , we can compute the entanglement entropy of

$\log g_1 + \log g_2 + \cdots$

EE = BCFT correspondence EE

Subregion Hilbert space \mathcal{H}_A

Reduced density matrix ρ_A

Entanglement Hamiltonian

problem.

• Once we choose explicit conformal boundary conditions B_1 and B_2 at the entanglement cuts, the EE problem is mapped to the corresponding BCFT

EE = BCFT correspondence

- What determines the conformal boundary condition at the entanglement cuts?
- From the continuum field theory point of view, the choice is up to us. Different choices give the same universal result at the leading order.
- On the other hand, in many physical situations, we may also be interested in a particular microscopic realization, e.g. condensed matter systems at critical points.
- The correspondence with BCFT has been numerically tested in various critical lattice models [Lauchli '13].
- Comparing the entanglement spectrum with the BCFT spectrum gives more detailed information about the fixed point beyond central charge.

Symmetries of Entanglement Hamiltonian

- Suppose the 2D CFT we are interested in has a (finite) non-invertible global symmetry described by a fusion category. [Ingo Runkel's talk]
- How are these symmetries realized by the Entanglement Hamiltonian? What are their imprints?
- How does the Entanglement Spectrum organize into representations of the global symmetry? How frequently a given representation appear?
- For ordinary symmetries, this was studied in [Goldstein-Sela; Magan; Casini-Huerta-Magan-Pontello; Kusuki-Murciano-Ooguri-Pal;...], and corresponding Symmetry-Resolved Entanglement Entropies were computed. [Higher dimensions: Huang-Zhou (yesterday)]

Symmetries and Boundaries in 2D CFTs

Global Symmetries in 2D CFTs

- Global (internal) symmetries in 2D CFTs are generated by topological line defects. lacksquare
- They are also known as totally transmissive defects $[\mathcal{D}, L_n] = [\mathcal{D}, L_n] = 0.$
- We focus on the case where we have a finite collection $\{\mathscr{D}_i\}$ of topological line defects closed under multiplication: $\mathcal{D}_i \times \mathcal{D}_i = \sum N_{ii}^k \mathcal{D}_k$.
- The collection of topological lines then forms a fusion category \mathscr{C} . [Ingo Runkel's talk]
- There is a plethora of examples, e.g., minimal models [Yu Nakayama's talk], WZW models, free boson [Yuma Furuta's talk], and so on.

- We are interested in the symmetries of the entanglement Hamiltonian, or equivalently, of the open string Hamiltonian H_{open} .

• When a topological line \mathscr{D}_i is stretched across the open interval, one has a freedom to choose the junction operators y_1 and y_2 at the endpoints.

• When the junction operators y_1 and y_2 are also chosen to be topological (zero scaling dimension), the whole configuration preserves the Virasoro symmetry.

• In particular, $\mathscr{D}_{i}^{y_{1}y_{2}}H_{open;B_{1}B_{2}} = H_{open;B_{3}B_{4}}\mathscr{D}_{i}^{y_{1}y_{2}}$ or $[\mathscr{D}_{i}^{y_{1}y_{2}}, H_{open}] = 0$ in short.

Global Symmetries in 2D BCFTs *y*₃ B_3 y_1 The collection of operators $\{\mathscr{D}_{i}^{y_{1}y_{2}}\}$ acts on the extended open string Hilbert space $\mathcal{H}_{open} \equiv \bigoplus \mathcal{H}_{BB'}.$

BB'

can be computed in terms of the boundary 6j-symbols. k, y_5, y_6

Global Symmetries in 2D BCFTs B_{5} *y*₃ = , B_4 B_3 y_2 *y*₁

- open string Hilbert space.
- We call this algebra a boundary tube algebra (or strip algebra).
- "Boundary Tube Algebra = Symmetry of Entanglement Hamiltonian"
- Ohyama; Cordova-Holfester-Ohmori; Copetti-Cordova2-Komatsu; ...]

• The collection of operators $\{\mathscr{D}_i^{ab}\}$ therefore defines a symmetry algebra acting on the

• Such an algebra also appears in many different physical contexts. [Kitaev-Kong; Inamura-

Boundary Tube Algebra

- The symmetry algebra in the open string channel so-defined is usually tedious to work out explicitly.
- However, it is often much easier to directly understand its representations.
- We will argue that the open string Hilbert space decomposes as

$$\mathcal{H}_{B_1B_2} = \bigoplus_{\alpha} \mathcal{H}_{B_1B_2}^{\alpha}$$

- α labels irreducible representations of the Boundary Tube Algebra.
- $W^{\alpha}_{B_1B_2}$ and $\mathcal{V}^{B_1B_2}_{\alpha}$ are certain 3D TQFT Hilbert spaces quantized on a disk with appropriately chosen boundary conditions and decorations by defects.

$$= \bigoplus_{\alpha} \left(W^{\alpha}_{B_1 B_2} \otimes \mathcal{V}^{B_1 B_2}_{\alpha} \right) \,.$$

Example: Double Ising CFT

- Consider two copies of the Ising CFT.
- The symmetry of interest will be the $\mathbb{Z}_2 \times \mathbb{Z}_2$ plus $\mathcal{N} \equiv \mathcal{N}_1 \mathcal{N}_2$.
- under this symmetry. [YC-Rayhaun-Sanghavi-Shao]

The double Ising CFT admits a (strongly) symmetric boundary condition B

Example: Double Ising CFT

- algebra H_8 .
- Historically, H_8 is the first Hopf algebra discovered which is neither commutative nor cocommutative.

$$\begin{split} \mathsf{H}_{g} \times \mathsf{H}_{h} &= \mathsf{H}_{h} \times \mathsf{H}_{g} = \mathsf{H}_{gh} \,, \\ \mathsf{H}_{\mathcal{N}}^{ss'} \times \mathsf{H}_{a} &= \mathsf{H}_{b} \times \mathsf{H}_{\mathcal{N}}^{ss'} = (-1)^{s} \mathsf{H}_{\mathcal{N}}^{s(s'+1)} \,, \\ \mathsf{H}_{\mathcal{N}}^{ss'} \times \mathsf{H}_{b} &= \mathsf{H}_{a} \times \mathsf{H}_{\mathcal{N}}^{ss'} = (-1)^{s'} \mathsf{H}_{\mathcal{N}}^{(s+1)s'} \,, \\ \mathsf{H}_{\mathcal{N}}^{s_{1}s_{2}} \times \mathsf{H}_{\mathcal{N}}^{s_{3}s_{4}} &= 2 \sum_{m,n=0,1} (-1)^{f_{mn}(s_{i})} \mathsf{H}_{a^{m}b^{n}} \,, \end{split}$$

The boundary tube algebra in this case is given by the Kac-Paljutkin Hopf

- Under the state-operator correspondence, the states in the open string Hilbert space $\mathscr{H}_{B_1B_2}$ are mapped to boundary-changing local operators.
- Therefore equivalently, the spectrum of boundary-changing local operators organize into representations of the Boundary Tube Algebra.

Topological Holography / Symmetry TFT

- The relation between 2D WZW models and 3D Chern-Simons TQFTs has a long history. [Moore-Seiberg; Witten; ...; Fuchs-Schweigert-Runkel; ...]
- More generally, any 2D QFT \hat{Q} with a global symmetry can be uplifted to a boundary condition \tilde{Q} of a 3D Turaev-Viro TQFT. [Ingo Runkel's talk]
- The relation is sometimes referred to as "Topological Holography" or Symmetry TFT. [...; Gaiotto-Kapustin-Seiberg-Willett; Gaiotto-Kulp; Freed-Moore-Teleman; Ji-Wen; ...]

Topological Holography Q

- It is generally interesting to fill in the "Holographic Dictionary."
- For instance, the closed string (circle) Hilbert space of a CFT (2) is isomorphic to the disk D^2 Hilbert space of the Turaev-Viro TQFT punctured by a Lagrangian anyon $\mathscr{L}_{\mathbb{D}}$ and the boundary condition \tilde{Q} imposed on ∂D^2 . [Elitzur-Moore-Schwimmer-Seiberg; ...]

Topological Holography of Conformal Boundaries

- What is the 3D "bulk dual" of conformal boundary conditions of a 2D CFT Q?
- Suppose Q has fusion category symmetry C and a multiplet of conformal boundaries $\{B_i\}$ transforming into each other under the action of C.
- Mathematically, the set of conformal boundary conditions $\{B_i\}$ forms a module category \mathscr{M} over the fusion category \mathscr{C} .
- Moreover, it is known that topological boundary conditions of $TV(\mathscr{C})$ are in 1-to-1 correspondence with module categories $\mathscr{M}.$ [Kitaev-Kong]

Topological Holography of Conformal Boundaries

 We claim that a conformal boundary condition B in 2D inflates into a Ohmori; Copetti-Cordova2-Komatsu; Bhardwah-Copetti-Pajer-SchaferNameki].

topological boundary condition of the 3D TQFT, labeled by the module

category *M* that it belongs to. [YC-Rayhaun-Zheng; Huang-Cheng; Cordova-Holfester-

Topological Holography of Conformal Boundaries

- and B_2 , belonging to module categories \mathcal{M}_1 and \mathcal{M}_2 .
- \mathcal{O} becomes a triple $(\mathcal{O}, \alpha, \tilde{\mathcal{O}})$ on the 3D side.

• Let O be a boundary-changing local operator between two conformal boundaries B_1

• α is a line interface between two TQFT boundary conditions labeled by \mathcal{M}_1 and \mathcal{M}_2 .

Topological Holography of Conformal Boundaries

 α labels representations of the boundary tube algebra. Action of a topological line \mathscr{D} never changes α on the 3D side. (Mathematically α is given by module functors from \mathscr{M}_1 to \mathscr{M}_2 .) [Douglas-SchommerPries-Snyder; Barter-Bridgeman-Wolf; Bai-Zhang (this week)]

The open string Hilbert space decomposed

ses as
$$\mathscr{H}_{B_1B_2} = \bigoplus \mathscr{H}_{B_1B_2}^{\alpha}$$

Non-Invertible Symmetry and Entanglement Entropy

Symmetry-Resolved Entanglement Entropy

- We have understood the global symmetry of the Entanglement Hamiltonian $H_{EE} = -2\pi \log \rho_A$ (open string Hamiltonian): Boundary Tube Algebra.
- We have understood the representations: Boundary Line Interfaces α in 3D TQFT. (Mathematically, module functors.)
- As an immediate application, we can compute the Non-Invertible Symmetry-Resolved Entanglement Entropy.

Symmetry-Resolved Entanglement Entropy

the reduced density matrix ρ_A into different representation sectors:

 $\rho_A =$

of each block:

Using the symmetry of the Entanglement Hamiltonian, we block diagonalize

$$= \bigoplus \rho_A^{\alpha}.$$

α

The Symmetry-Resolved Entanglement Entropy is defined to be the entropy

 $S_{EE}^{\alpha} = -\operatorname{Tr} \tilde{\rho}_{A}^{\alpha} \log \tilde{\rho}_{A}^{\alpha}.$

Using the correspondence to 3D TQFT, we can compute

$$S_{EE}^{\alpha} = \frac{c}{3} \log \frac{L}{\epsilon} + \log(g_1 g_2) + \log \frac{d_{\alpha} N_{\alpha B_1}^{B_2}}{d_{B_1} d_{B_2}}$$

 $\lim_{\epsilon \to 0} [S_{EE}^{\alpha} - S_{E}]$

$$EE^{}] = \log \frac{d_{\alpha} N_{\alpha B_1}^{B_2}}{d_{B_1} d_{B_2}}.$$

Symmetry-Resolved Entanglement Entropy

also Harlow-Ooguri; Pal-Sun].

 For non-invertible symmetries, and (strongly) symmetric boundaries, we obtain $\log \frac{d_{\alpha}^2}{\dim(\mathscr{C})^2}$. Similar results were reported in [Benedetti-Casini-Kawahigashi-Longo-Margan; SauraBastida-Das-Sierra-MolinaVilaplana; see also Lu-Sun; Lin-Okada-Seifnashri-Tachikawa].

• The result for completely symmetry breaking boundaries were derived in [Heymann-Quella] for rational CFTs, together with some numerical tests.

 $\lim_{\epsilon \to 0} [S^{\alpha}_{EE} - S_{EE}] = \log \frac{d_{\alpha} N^{B_2}_{\alpha B_1}}{d_{B_1} d_{B_2}}$

For ordinary (finite) symmetry G, and symmetric boundary conditions, we obtain $\log \frac{a_{\alpha}}{|G|}$, reproducing the results of [Casini-Huerta-Magan-Pontello; Magan; Kusuki-Murciano-Ooguri-Pal; see

Symmetry-Resolved Entanglement Entropy

For (strongly) symmetric boundaries at the entanglement cut

 $\lim_{\epsilon \to 0} [S_{EE}^{\alpha} - S_{EE}]$

- the entanglement spectrum."

$$E^{}] = \log \frac{d_{\alpha}^{2}}{\dim(\mathscr{C})^{2}}$$

• Every irreducible representation α appears in the spectrum. "Completeness of

For the trivial representation $\alpha = 1$, we find $\log \frac{1}{\dim(\mathscr{C})^2}$ = Topological Entanglement Entropy of the 3D Turaev-Viro TQFT. [Kitaev-Preskill; Levin-Wen]

Summary

- In 2D CFTs, the entanglement of a single interval can be analyzed using conformal boundaries.
- The Entanglement Hamiltonian has Boundary Tube Algebra as a global symmetry.
- The formula reproduces several known results, and generalizes them.
- Underlying this, the correspondence to 3D TQFT was crucial.

We computed the corresponding Symmetry-Resolved Entanglement Entropy.

Thank you!