
Yichul Choi (IAS)

Non-Invertible Symmetry and 
Entanglement Entropy
Based on arXiv 2409.02159 and 2409.02806 (PRL)  
with Brandon C. Rayhaun and Yunqin Zheng 

https://arxiv.org/abs/2409.02159
https://arxiv.org/abs/2409.02806
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.251602


Plan of the Talk

1. Review: Entanglement Entropy and BCFT [Ohmori-Tachikawa ’14; …] 

2. Symmetries and Conformal Boundaries in 2D


3. “Topological Holography” for Conformal Boundaries


4. Non-Invertible Symmetries and Entanglement Entropy

https://arxiv.org/abs/1406.4167


Entanglement Entropy and BCFT



Entanglement Entropy in 2D CFT

Famously,     [Holzhey-Larsen-Wilczek ’94]


where  “  ” is the reduced density matrix of the interval .
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Entanglement Entropy in 2D CFT

• Strictly speaking, the expression “  ” does not make 
sense in continuum field theories.


• The Hilbert space does not factorize: .


• Relatedly, the entanglement entropy naively diverges, and requires 
regularization.


• We follow [Ohmori-Tachikawa ’14], and will introduce explicit conformal boundary 
conditions at the entanglement cuts. [Yang Zhou’s talk]


 

ρA = TrℋAc |Ω⟩⟨Ω |
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Conformal Boundaries and EE

• To obtain an explicitly factorized Hilbert space, we consider a “topology-
changing” Euclidean path integral.


• At the semicircles, we impose conformal boundary conditions  and .


• The path integral defines a map .
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Conformal Boundaries and EE

• We define the reduced density matrix of the single interval  of the vacuum 
state  by .


•  is obtained by the Euclidean path integral on a plane with two small disks 
and a slit between them excised. 
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Conformal Boundaries and EE

• By performing a conformal transformation , we map to a 
cylinder (with a small slit excised) with circumference  and length .


• The reduced density matrix is determined by the open string Hamiltonian:


   where .
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Conformal Boundaries and EE

• By using the explicit form of , we can compute the entanglement entropy of 
the interval , [cf. Nathan Benjamin’s talk]


.


• Here,  are the g-functions of conformal boundaries .


•  is also known as the Affleck-Ludwig boundary entropy. 
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EE = BCFT correspondence

• Once we choose explicit conformal boundary conditions  and  at the 
entanglement cuts, the EE problem is mapped to the corresponding BCFT 
problem.
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EE = BCFT correspondence

• What determines the conformal boundary condition at the entanglement cuts?


• From the continuum field theory point of view, the choice is up to us. Different 
choices give the same universal result at the leading order.


• On the other hand, in many physical situations, we may also be interested in a 
particular microscopic realization, e.g. condensed matter systems at critical 
points.


• The correspondence with BCFT has been numerically tested in various critical 
lattice models [Lauchli ’13]. 


• Comparing the entanglement spectrum with the BCFT spectrum gives more 
detailed information about the fixed point beyond central charge.



Symmetries of Entanglement Hamiltonian

• Suppose the 2D CFT we are interested in has a (finite) non-invertible global 
symmetry described by a fusion category. [Ingo Runkel’s talk]


• How are these symmetries realized by the Entanglement Hamiltonian? What 
are their imprints?


• How does the Entanglement Spectrum organize into representations of the 
global symmetry? How frequently a given representation appear?


• For ordinary symmetries, this was studied in [Goldstein-Sela; Magan; Casini-Huerta-
Magan-Pontello; Kusuki-Murciano-Ooguri-Pal;…], and corresponding Symmetry-
Resolved Entanglement Entropies were computed. [Higher dimensions: Huang-Zhou 
(yesterday)]



Symmetries and Boundaries in 
2D CFTs



Global Symmetries in 2D CFTs
• Global (internal) symmetries in 2D CFTs are generated by topological line defects.


• They are also known as totally transmissive defects .


• We focus on the case where we have a finite collection  of topological line 
defects closed under multiplication: . 


• The collection of topological lines then forms a fusion category . [Ingo Runkel’s 
talk]


• There is a plethora of examples, e.g., minimal models [Yu Nakayama’s talk], WZW 
models, free boson [Yuma Furuta’s talk], and so on.

[𝒟, Ln] = [𝒟, L̄n] = 0

{𝒟i}
𝒟i × 𝒟j = ∑

k

Nk
ij𝒟k

𝒞



Global Symmetries in 2D BCFTs

• We are interested in the symmetries of the entanglement Hamiltonian, or 
equivalently, of the open string Hamiltonian .


• When a topological line  is stretched across the open interval, one has a 
freedom to choose the junction operators  and  at the endpoints. 
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Global Symmetries in 2D BCFTs

• When the junction operators  and  are also chosen to be topological (zero 
scaling dimension), the whole configuration preserves the Virasoro symmetry.


• In particular,  or  in short.
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Global Symmetries in 2D BCFTs

The collection of operators  acts on the extended open string Hilbert space 
 .


The operators can be multiplied:  where  

can be computed in terms of the boundary 6j-symbols.
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Global Symmetries in 2D BCFTs

• The collection of operators  therefore defines a symmetry algebra acting on the 
open string Hilbert space.


• We call this algebra a boundary tube algebra (or strip algebra).


• “Boundary Tube Algebra = Symmetry of Entanglement Hamiltonian”.


• Such an algebra also appears in many different physical contexts. [Kitaev-Kong; Inamura-
Ohyama; Cordova-Holfester-Ohmori; Copetti-Cordova2-Komatsu; …]
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Boundary Tube Algebra
• The symmetry algebra in the open string channel so-defined is usually tedious 

to work out explicitly.


• However, it is often much easier to directly understand its representations.


• We will argue that the open string Hilbert space decomposes as


  .


•  labels irreducible representations of the Boundary Tube Algebra.


•  and  are certain 3D TQFT Hilbert spaces quantized on a disk with 
appropriately chosen boundary conditions and decorations by defects.
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Example: Double Ising CFT

• Consider two copies of the Ising CFT.


• The symmetry of interest will be the  plus .


• The double Ising CFT admits a (strongly) symmetric boundary condition  
under this symmetry. [YC-Rayhaun-Sanghavi-Shao]

ℤ2 × ℤ2 𝒩 ≡ 𝒩1𝒩2
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Example: Double Ising CFT

• The boundary tube algebra in this case is given by the Kac-Paljutkin Hopf 
algebra .


• Historically,  is the first Hopf algebra discovered which is neither 
commutative nor cocommutative.

H8

H8



Boundary-Changing Operators

• Under the state-operator correspondence, the states in the open string 
Hilbert space  are mapped to boundary-changing local operators.


• Therefore equivalently, the spectrum of boundary-changing local operators 
organize into representations of the Boundary Tube Algebra. 
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Topological Holography / 
Symmetry TFT



Topological Holography

• The relation between 2D WZW models and 3D Chern-Simons TQFTs has a long 
history. [Moore-Seiberg; Witten; …; Fuchs-Schweigert-Runkel; …]


• More generally, any 2D QFT  with a global symmetry can be uplifted to a 
boundary condition  of a 3D Turaev-Viro TQFT. [Ingo Runkel’s talk]


• The relation is sometimes referred to as “Topological Holography” or Symmetry 
TFT. […; Gaiotto-Kapustin-Seiberg-Willett; Gaiotto-Kulp; Freed-Moore-Teleman; Ji-Wen; …]
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Topological Holography

• It is generally interesting to fill in the “Holographic Dictionary.”


• For instance, the closed string (circle) Hilbert space of a CFT  is isomorphic to 
the disk  Hilbert space of the Turaev-Viro TQFT punctured by a Lagrangian 
anyon  and the boundary condition  imposed on . [Elitzur-Moore-
Schwimmer-Seiberg; …]
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Topological Holography of Conformal 
Boundaries
• What is the 3D “bulk dual” of conformal boundary conditions of a 2D CFT ?


• Suppose  has fusion category symmetry  and a multiplet of conformal 
boundaries  transforming into each other under the action of .


• Mathematically, the set of conformal boundary conditions  forms a 
module category  over the fusion category .


• Moreover, it is known that topological boundary conditions of  are in 
1-to-1 correspondence with module categories . [Kitaev-Kong]
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Topological Holography of Conformal 
Boundaries

• We claim that a conformal boundary condition  in 2D inflates into a 
topological boundary condition of the 3D TQFT, labeled by the module 
category  that it belongs to. [YC-Rayhaun-Zheng; Huang-Cheng; Cordova-Holfester-
Ohmori; Copetti-Cordova2-Komatsu; Bhardwah-Copetti-Pajer-SchaferNameki].
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Topological Holography of Conformal 
Boundaries

• Let  be a boundary-changing local operator between two conformal boundaries  
and , belonging to module categories  and .


•  becomes a triple  on the 3D side.


•  is a line interface between two TQFT boundary conditions labeled by  and .
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Topological Holography of Conformal 
Boundaries

 labels representations of the boundary tube algebra. Action of a topological line  
never changes  on the 3D side. (Mathematically  is given by module functors from 

 to .) [Douglas-SchommerPries-Snyder; Barter-Bridgeman-Wolf; Bai-Zhang (this week)]


The open string Hilbert space decomposes as .
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Non-Invertible Symmetry and 
Entanglement Entropy



Symmetry-Resolved Entanglement Entropy

• We have understood the global symmetry of the Entanglement Hamiltonian 
 (open string Hamiltonian): Boundary Tube Algebra.


• We have understood the representations: Boundary Line Interfaces  in 3D 
TQFT. (Mathematically, module functors.)


• As an immediate application, we can compute the Non-Invertible Symmetry-
Resolved Entanglement Entropy.

HEE = − 2πlogρA
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Symmetry-Resolved Entanglement Entropy

• Using the symmetry of the Entanglement Hamiltonian, we block diagonalize 
the reduced density matrix  into different representation sectors:


.


• The Symmetry-Resolved Entanglement Entropy is defined to be the entropy 
of each block:


.
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Symmetry-Resolved Entanglement Entropy

Using the correspondence to 3D TQFT, we can compute


.


.
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Symmetry-Resolved Entanglement Entropy

• For ordinary (finite) symmetry , and symmetric boundary conditions, we obtain , 

reproducing the results of [Casini-Huerta-Magan-Pontello; Magan; Kusuki-Murciano-Ooguri-Pal; see 
also Harlow-Ooguri; Pal-Sun].


• For non-invertible symmetries, and (strongly) symmetric boundaries, we obtain 

. Similar results were reported in [Benedetti-Casini-Kawahigashi-Longo-Margan; 

SauraBastida-Das-Sierra-MolinaVilaplana; see also Lu-Sun; Lin-Okada-Seifnashri-Tachikawa].


• The result for completely symmetry breaking boundaries were derived in [Heymann-Quella] for 
rational CFTs, together with some numerical tests.
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Symmetry-Resolved Entanglement Entropy

• For (strongly) symmetric boundaries at the entanglement cut


.


• Every irreducible representation  appears in the spectrum. “Completeness of 
the entanglement spectrum.”


• For the trivial representation , we find  = Topological 

Entanglement Entropy of the 3D Turaev-Viro TQFT. [Kitaev-Preskill; Levin-Wen]
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Summary

• In 2D CFTs, the entanglement of a single interval can be analyzed using 
conformal boundaries.


• The Entanglement Hamiltonian has Boundary Tube Algebra as a global 
symmetry.


• We computed the corresponding Symmetry-Resolved Entanglement Entropy. 
The formula reproduces several known results, and generalizes them.


• Underlying this, the correspondence to 3D TQFT was crucial.



Thank you!


