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Non-Supersymmetric Heterotic Strings

• We all are familiar with the (E8 × E8) o Z2 and Spin(32)/Z2 heterotic
string theories.

• But there are known to be 7 other heterotic strings:

e8 , u(16) , (e7 × su(2))2 , o(8)× o(24) ,

o(16)× e8 , o(32) , o(16)× o(16)

• These were originally found in [Kawai, Lewellen, Tye ‘86; Dixon, Harvey ‘86].

– Until very recently, it was unknown if these were all of the possibilities, or
if there could be others. The completeness of this list was proven in
[Boyle Smith, Lin, Tachikawa, Zheng ‘23] (see also [Rayhaun ‘23; Höhn, Möller ‘23]),
where the set of all c = 16 spin-CFTs was classified.

• All of these theories are non-supersymmetric. All but the last one has a
closed string tachyon.
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Non-Supersymmetric Heterotic Strings

• The closed string tachyon is worrying, but not fatal. It simply indicates
that we are expanding around the wrong vacuum.

• We can condense the tachyon to obtain tachyon-free vacua in lower
dimensions [Hellerman, Swanson ‘07; JK ‘20]

R1,9 × e8 −→ R1,7 × Rlin. dil. × e8

R1,9 × u(16) −→ R1,6 × Rlin. dil. × su(16)

R1,9 × (e7 × su(2))2 −→ R1,4 × Rlin. dil. × e7 × e7

R1,9 × o(8)× o(24) −→ R× Rlin. dil. × o(24)

R1,9 × o(16)× e8 −→ R× Rlin. dil. × o(8)× e8

R1,9 × o(32) −→ R× Rlin. dil. × o(24)

• All of the resulting vacua are (perturbatively) stable, but have a linear
dilaton. Note that we obtain vacua in 9d, 8d, 6d, and 2d; the latter are
equivalent to the 2d heterotic strings in [Davis, Larsen, Seiberg ‘05].
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Non-Supersymmetric Heterotic Strings

• How should we interpret these vacua?

• A hint: another place in string theory where a linear dilaton arises is in the
near horizon region of an NS5 brane.

• So maybe these non-supersymmetric strings exist in order to
describe the near-horizon regions of some new branes?

• The d = 9, 8, 6, 2 vacua would be appropriate to describe the near-horizons
of 7-,6-,4-,0-branes.

• The branes would be in the supersymmetric (E8 × E8) o Z2 or
Spin(32)/Z2 heterotic strings, and would break all supersymmetries.

• Of course, no such branes were known. . .
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Non-Supersymmetric Heterotic Branes

• A separate question: the old quantum gravity lore states that
(see [McNamara, Vafa ‘19] for a modern version):

• Basically any topological invariant should count as a charge. Note that:

π0 ((E8 × E8) o Z2) ' Z2 π1(Spin(32)/Z2) ' Z2

π3 ((E8 × E8) o Z2) ' Z× Z π7(Spin(32)/Z2) ' Z

• What carries the charges?

• They would capture non-trivial configurations on S1, S2, S4, S8, which is
just what is needed to surround a 7-,6-,4-,0-brane!

• Are the two related???

4



Justin Kaidi Non-Supersymmetric Heterotic Branes

The NS5-brane

• Recall another context in which a linear dilaton arises: the NS5-brane.
• In supergravity, we have the following extremal solution:

ds2NS5 = dx2‖ + e2φdx2⊥ Hmnp = −εmnpq ∂qφ

e2φ = e2φ(∞) +
r20
r2

Am = −2ρ2 Σnm
xn

r2(r2 + ρ2)

where r is the transverse radial direction. [Callan, Harvey, Strominger ‘91]

• In the near-horizon limit r → 0:

ds2NS5 = dx2‖ +
r20
r2
dr2 + r20dΩ2

3 e2φ =
r20
r2

• Or defining y := log r
r0

,

ds2NS5 = dx2‖ + dy2 + r20dΩ2
3 φ = −y
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The NS5-brane

• So the extremal, near-horizon solution is:

ds2NS5 = dx2‖ + dy2 + r20 dΩ2
3 φ = −y

with one unit of H flux through S3 (in general r0 is small though!)

• There is an exact worldsheet description for this near-horizon solution
[Callan, Harvey, Strominger ‘91]

R1,5 × Rlinear dilaton × su(2)• × g

• Intuitively: think of this as a 7d vacuum with a linear dilaton and
su(2)× g gauge group.

• This is expected to be the holographic dual to the 6d LST living on the
NS5 brane. [Aharony, Berkooz, Kutasov, Seiberg ‘98]
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The 6-brane

• We now try an analogous thing for the 6-brane. Our considerations before
suggest that the near-horizon limit is described by

R1,6 × Rlinear dilaton × su(16)•

• To reproduce this, we note that there exists a black 6-brane solution for
the so(32) heterotic string [Horowitz, Strominger ‘91]

ds2 = −
(1− r+

r )

(1− r−
r )
dt2 + d~x2 +

dr2

(1− r+
r )(1− r−

r )
+ r2dΩ2

2

e−2φ = e−2φ(∞)
(

1− r−
r

)
8r+r− = α′

16∑
i=1

q2i

Fso(32)

2π
=

16⊕
i=1

(
0 qi
−qi 0

)
vol(S2)

4π
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The 6-brane

• Taking the extremal, near-horizon limit gives:

ds2 = dx2‖ + dy2 + r20 dΩ2
2 φ = −y

Fso(32)

2π
=

16⊕
i=1

(
0 qi
−qi 0

)
vol(S2)

4π

so we have an infinite throat with S2 of constant size r0 :=
√

α′
8

∑16
i=1 qi

2 .

• An important fact about the so(32) heterotic string is that the global form
of the gauge group is Spin(32)/Z2. This makes it possible to choose
qi = 1/2.

• If we choose qi = 1/2 for all i, then we preserve u(16) ⊂ so(32).

• We expect this to give the six-brane, but note that r0 = (α′/2)1/2, so that
supergravity is not reliable.
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The 6-brane

• At this point we transition to a worldsheet analysis. Worldsheet version of
near-horizon limit would be (ignoring flux):

R1,6 × Rlinear dilaton × (N = (0, 1) S2)× so(32)1

• It turns out that

so(32)1 = [su(16)1 × so(2)1]/(−1)FL

• With the flux, we can reorganize the worldsheet theory as

R1,6 × Rlinear dilaton × [(N = (1, 1) S2)× su(16)1]/(−1)FL

(because vector bundle of so(2)1 = tangent bundle of S2)

• This is not a solution to the string equations of motion since it is not
conformal. But it flows in the IR to the following theory:

R1,6 × Rlinear dilaton × su(16)1
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The 6-brane

• We end up with an 8d spacetime with linear dilaton and su(16) gauge
group. This is precisely the 8d vacuum obtained via closed string tachyon
condensation in the non-SUSY u(16) string!

• So indeed, the near-horizon limit of the 6-brane is described by this vacuum.

• What charge does the 6-brane carry?

– Recall that it sources the following flux:
∫
S2

Fso(32)

2π = 1
2

⊕16
i=1

(
0 1
−1 0

)
– This is incompatible with the vector representation, but is compatible with

the adjoint and one of the spinor representations.

– Given a Spin(32)/Z2 bundle, the obstruction to it being a SO(32) bundle is
captured by a class w̃2 (c.f. π1(Spin(32)/Z2) = Z2).

– This is the charge carried by the brane.
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Other branes

• The key tool in the above analysis was the identity

so(32)1 = [su(16)1 × so(2)1]/(−1)FL

• There are three (actually 5) similar identities:

so(32)1 = [so(24)1 × so(8)1]/(−1)FL

(e8 × e8)1 = [(e7 × e7)1 × so(4)1]/(−1)FL

(e8 × e8)1 = [(e8)2 × so(1)1]/(−1)FL

• These can be used to give exact worldsheet descriptions for 0-, 4-,
and 7-branes, respectively.
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0-, 4-, and 6-branes

• For p = 0, 4, 6, the idea is to use:

R1,p × Rlin. dil. × [N = (0, 1) S8−p]× g1y add flux and use g1 = [hk × so(8− p)1]/(−1)FL

R1,p × Rlin. dil. × [hk ×
(
N = (1, 1) S8−p)]/(−1)FLy RG flow

R1,p × Rlin. dil. × hk

• The results match with those coming from closed string tachyon
condensation in non-SUSY strings.

• SUGRA solutions for the p = 0, 4 were given in [Fukuda, Kobayashi, Watanabe,

Yonekura ‘24]
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The 7-brane

• The 7-brane is a bit more subtle. In that case we end up with an
N = (1, 1) S1 sigma model, so there is seemingly no RG flow.

• However, say that we take the S1 to have holonomy for the Z2 interchanging
the two copies of E8, and also give it anti-periodic spin structure.

• Now consider the operator

ψLψRe
iφ̂ , φ̂ = dual of φ

Because Zperm
2 is the quantum dual to (−1)FL, the operator eiwφ̂ has charge

(−1)FL = (−1)w. Then the above operator survives the gauging of (−1)FL,
and it also survives the GSO projection.

• So the above operator exists in the theory, but since

hL = hR =
1

2
+

1

4
R2

when R is small it gives a tachyon. Condensing it gives R1,p × Rlin. dil. × hk
as before.
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Summary of branes

• We have now identified the following four branes:

– A 0-brane in the Spin(32)/Z2 heterotic string. This brane serves as an
endpoint for the heterotic string [Polchinski ‘05].

– A 4-brane in the (E8 × E8) o Z2 heterotic string. This brane can be
interpreted as an M5 stretched between two M9s in Horava-Witten theory
[Bergshoeff, Gibbons, Townsend ‘06].

– A 6-brane in the Spin(32)/Z2 heterotic string. It sources gauge configurations
without vector structure.

– A 7-brane in the (E8 × E8) o Z2 heterotic string. This brane has monodromy
for the Z2 factor exchanging the two copies of E8.
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SQFTs and TMF

• Let’s now make some more math-oriented comments.

• Begin by defining

SQFTn := {N = (0, 1) SQFTs with grav. anomaly n} / ∼

• The equivalence relation is roughly “identification by continuous
deformations” (including flowing up and down RG flows).

– More concretely: say Yn+1 ⊂ SQFTn+1 has a boundary if it has a
non-compact direction in which Yn+1 → R>0 ×Xn, and denote Xn = ∂Yn+1.

– The equivalence relation is then defined similarly to bordism

• There is a conjecture due to [Stolz, Teichner ‘02; ‘11]:

SQFTn = TMFn
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SQFTs and TMF

• The groups TMFn have been computed thanks to monumental efforts by
mathematicians. For example, we have:

TMF−31 = Z2 + Z2 TMF−26 = 0

TMF−30 = Z2 + Z2 TMF−25 = 0

TMF−29 = 0 TMF−24 = Z + Z

TMF−28 = Z + Z2 TMF−23 = Z2

TMF−27 = 0 TMF−22 = Z2
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SQFTs and TMF

• The groups TMFn have been computed thanks to monumental efforts by
mathematicians. For example, we have:

TMF−31 = Z2 + Z2 TMF−26 = 0

TMF−30 = Z2 + Z2 TMF−25 = 0

TMF−29 = 0 TMF−24 = Z + Z

TMF−28 = Z + Z2 TMF−23 = Z2

TMF−27 = 0 TMF−22 = Z2

• What are the invariants that label a TMF class?

– Given any SQFT, one can compute its ordinary/mod-2 elliptic genus
EG : TMF• → KO•((q)). This gives one invariant.

– However, EG is not enough to completely specify the TMF class. In particular,
the classes in blue above live in ker(EG).
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TMF and branes

• Returning to our branes, recall that we had

[N = (0, 1) S8−p]× g1
continuous def.−−−−−−−−−→ hk

so that [(N = (0, 1) S8−p)× g1] = [hk] (for appropriate fluxes).

• Note that g1 has (cL, cR) = (16, 0) and S8−p has 8− p left- and right-moving
bosons and 8− p right-moving fermions, so that (cL, cR) = (8− p, 32(8− p)).
In total then, the above classes have n = 2(cR − cL) = −p− 24, so that

7-brane : [(e8)2] ∈ TMF−31

6-brane : [(su(16))1] ∈ TMF−30

4-brane : [(e7 × e7)1] ∈ TMF−28

0-brane : [(so(24))1] ∈ TMF−24
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TMF and branes

• Going back to our previous list,

TMF−31 = Z2 + Z2 TMF−26 = 0

TMF−30 = Z2 + Z2 TMF−25 = 0

TMF−29 = 0 TMF−24 = Z + Z

TMF−28 = Z + Z2 TMF−23 = Z2

TMF−27 = 0 TMF−22 = Z2

• For the 0-brane, it’s easy to check that EG(so(24)1) is non-trivial.

• For the other three cases, one can check that EG(hk) = 0, and that the
angular theories give the generators of the blue elements!
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TMF class = brane charge?

• It seems like TMF classes give a “worldsheet version” of brane charges in
the heterotic string. But not quite:

– TMF can be “too small”: The angular part of the NS5 brane [S3
H=1 × g1]

is trivial in TMF, because it is trivial in ΩSUGRA (may be non-trivial in
equivariant TMF though).

– TMF can be “too big”: We usually measure charges by considering a
sphere at infinity that surrounds the object. For a generic TMF class though,
the “sphere at infinity” might not be a sphere (above we could always write
[hk] = [(N = (0, 1) S8−p)× g1], but we can’t in general)

• Nevertheless, we could still try to use TMF identities to motivate
dualities.
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TMF and dualities

• Example: it can be shown that

[(e8)2]× [S1
p] = [su(16)1]

which suggests the following duality

HE with 7-brane on S1
p = HO with 6-brane

(precise duality would require appropriate Wilson lines)

• By similar means, one might guess that

HE with 7-brane on S1
p × S3

H=1 = HO with 6-brane on S3
H=1

= HE with NS5 on S1
p × S1

a

= HO with NS5 on S2
v

(S1
p = S1 with periodic spin structure; S1

a = S1 with anti-periodic spin
structure and permutation twist )
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Summary

• We have found 0- and 6-branes in the Spin(32)/Z2 heterotic string, as
well as 4- and 7-branes in the (E8 × E8) o Z2 heterotic string.

• The near-horizon limits of these branes were shown to be described by
the stable, lower-dimensional vacua of the non-SUSY heterotic strings.

• By the holographic dictionary, the latter should provide holographic
descriptions of the worldvolume theories of the branes. So the reason that
the non-SUSY heterotic strings exist is to describe the worldvolume
theories of the non-SUSY branes!

• Intriguing connections to TMF, which remain to be fully understood.

• Other non-SUSY branes are in the process of being uncovered! [Dierigl,

Heckman, Montero, Torres ‘22; . . . ]
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The End (for now)

Thank you!
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