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Rapid neutron capture process (r-process)
• Responsible for ~50% of  

the abundance of heavy elements 

• High neutron density, 
temperature can reach > 10 GK 
- Compact binary mergers 
- Some types of core-collapse SNe 
- ? 

• Required nuclear data 
- Nuclear masses  
- Neutron capture & photodissociation 

- -decay & -delayed neutron emission 
- Fission 
- … 

• Contains neutron-rich nuclear physics

β β

Horizons: Nuclear Astrophysics in the 2020s and Beyond 16
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Figure 2: Chart of nuclei: The various astrophysical processes are displayed schematically
on the nuclear chart. Stellar fusion dominates nucleosynthesis of lighter elements up to
the region of Fe. Heavier elements are formed predominantly by neutron-capture reactions
via the s-processes, possibly a continuum of i-processes, and multiple r-processes including at
least a weak and a strong r-process. A group of proton-rich isotopes, the p nuclei, are believed
to be formed in the so-called p process, also known as � process, with possible contributions
from the ⌫p process. The rp-process and neutron star crust processes are not considered
major contributors to the origin of the elements but play a role in interpreting observations
of accreting neutron stars (Section 4.1).

provide the necessary nuclear inputs for astrophysical models such as nuclear masses,

decay properties, and reaction cross sections (see overview in [208]).

Most impressively, the extremely neutron-rich nuclei in the r-process are now

coming within reach (Fig. 2). Building on early work at ISOL type radioactive

beam facilities that reached r-process nuclei for the first time (e.g., [234]), pioneering

work at NSCL [235] and GSI [236] used fast radioactive isotope beams produced by

fragmentation to cover significant parts of the r-process. A recent milestone was the

BRIKEN campaign at RIKEN/RIBF that measured hundreds of neutron decay branches

following � decay between 75Co and 172Gd that are required for r-process models [237].

New techniques for the study of such �-delayed neutron emission [e.g., 238] build on

these successes. Atomic physics-based approaches to measure atomic masses with ion

traps, complemented by time-of-flight techniques using spectrometers and storage rings,

have pushed precision measurements of nuclear masses well into the path of the r-process

[239, 240, 241]. Novel “reverse engineering” techniques, coupled with state-of-the-art

mass measurements [242], are helping to bolster our understanding of the r-process

From Schatz et al. (2022), J. Phys. G: Nucl. Part. Phys. 49 110502 
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Hydrodynamical 
simulation of 

astrophysical events

,  
initial conditions 

etc.

T(t), ρ(t)

Nuclear reaction  
network calculation

6 VILLAR ET AL.

Figure 1. UVOIR light curves from the combined dataset (Table 3), along with the spherically symmetric three-component models with
the highest likelihood scores. Solid lines represent the realizations of highest likelihood for each filter, while shaded regions represent the 1�
uncertainty ranges. For some bands there are multiple lines that capture subtle differences between filters. Data originally presented in Andreoni
et al. 2017; Arcavi et al. 2017; Coulter et al. 2017; Cowperthwaite et al. 2017; Díaz et al. 2017; Drout et al. 2017; Evans et al. 2017; Hu et al.
2017; Kasliwal et al. 2017; Lipunov et al. 2017; Pian et al. 2017; Pozanenko et al. 2017; Shappee et al. 2017; Smartt et al. 2017; Tanvir et al.
2017; Troja et al. 2017; Utsumi et al. 2017; Valenti et al. 2017.

Fernández 2014; Metzger 2017). We implement this asym-
metric distribution by correcting the bolometric flux of each
component by a geometric factor: (1 - cos✓) for the blue
component and cos✓ for the red/purple component, where ✓
is the half opening angle of the blue component. Although
this model neglects other important contributions such as
changes in diffusion timescale, effective blackbody temper-
ature, or angle dependence, it roughly captures a first-order
correction to the assumption of spherical symmetry.

3.2. Fitting Procedure

We model the combined dataset using the light curve fit-
ting package MOSFiT (Guillochon et al. 2017a; Nicholl et al.
2017; Villar et al. 2017), which uses an ensemble-based
Markov Chain Monte Carlo method to produce posterior pre-
dictions for the model parameters. The functional form of the

log-likelihood is:

lnL = -1
2

nX

i=1


(Oi - Mi)2

�2
i +�2 - ln(2⇡�2

i )
�

- n
2

ln(2⇡�2), (6)

where Oi, Mi, and �i, are the ith of n observed magnitudes,
model magnitudes, and observed uncertainties, respectively.
The variance parameter � is an additional scatter term, which
we fit, that encompasses additional uncertainty in the models
and/or data. For upper limits, we use a one-sided Gaussian
penalty term.

For each component of our model there are four free pa-
rameters: ejecta mass (Mej), ejecta velocity (vej), opacity (),
and the temperature floor (Tc). We use flat priors for the first
three parameters, and a log-uniform prior for Tc (which is the
only parameter for which we consider several orders of mag-
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FIG. 2 Solar r-process abundances as determined by Cowan
et al. (1991) and Goriely (1999). The largest uncertainties
are clearly visible for A . 100 (weak s process region) and
around lead.

its overall neutron-capture element level is depressed rel-
ative to Fe (Sneden and Parthasarathy 1983, see also the
more extensive analysis of Honda et al. 2006). An ini-
tial abundance survey in metal-poor (MP) stars (Gilroy
et al., 1988) considered 20 red giants, finding a common
and easily spotted pattern of increasing overabundances
from Ba (Z = 56) to Eu (Z = 63) among the rare-
earth elements. With better echelle spectrographic data
came discoveries of many more r-process-rich stars, lead-
ing Beers and Christlieb (2005) to sub-classify them as
“r-I” with 0.3  [Eu/Fe]  +1.0 and [Ba/Eu] < 0, and
as “r-II” with [Eu/Fe] > +1.0 and [Ba/Eu] < 0.

The most detailed deconvolution of abundances into
nucleosynthetic contributions exists for the solar system,
as we have accurate abundances down to the isotopic
level as a result of meteoritic and solar atmospheric mea-
surements (e.g. Cameron, 1959; Asplund et al., 2009;
Lodders et al., 2009, see Fig. 1). Identifying the r-
process contributions to the solar system neutron-capture
abundances is usually accomplished by first determining
the s-process fractions, (e.g. Käppeler, 1999; Arlandini
et al., 1999; Burris et al., 2000; Käppeler et al., 2011).
The remaining (residual) amount of the total elemental
abundance is assumed to be the solar r-process contri-
bution (see Figures 1 and 2). Aside from the so-called
p-process (Arnould and Goriely, 2003; Rauscher et al.,
2013; Nishimura et al., 2018) that accounts for the minor
heavy element isotopes on the proton-rich side of the val-
ley of instability, as well as the ⌫-process (Woosley et al.,
1990) and the ⌫p-process (Fröhlich et al., 2006b), only
the s and r-processes are needed to explain nearly all of
the solar heavy element abundances.

Early observations of CS 22892-052 (Sneden et al.,
1994, 2003) and later CS 31082-001 (Hill et al., 2002;
Siqueira Mello et al., 2013) and references therein), in-
dicated a “purely” or “complete” solar system r-process
abundance pattern (see Figure 3). The total abundances

of these, mostly rare-earth, elements in the stars were
smaller than in the Sun but with the same relative pro-
portions, i.e., scaled. This indicated that these stars, that
likely formed early in the history of the Galaxy, experi-
enced already a pollution by a robust r-process.

!"#$%&'()$*+,-'.

FIG. 3 Top panel: neutron-capture abundances in 13 r-
II stars (points) and the scaled solar-system r-process-only
abundances of (Siqueira Mello et al., 2013), mostly adopted
from (Simmerer et al., 2004). The stellar and solar sys-
tem distributions have been normalized to agree for ele-
ment Eu (Z = 63), and than vertical shifts have been ap-
plied in each case for plotting clarity. The stellar abundance
sets are: (a) CS 22892-052, (Sneden and Cowan, 2003); (b)
HD 115444, (Westin et al., 2000); (c) BD+17 3248, (Cowan
et al., 2002); (d) CS 31082-001, (Siqueira Mello et al., 2013);
(e) HD 221170, (Ivans et al., 2006); (f) HD 1523+0157,
(Frebel et al., 2007); (g) CS 29491-069, (Hayek et al., 2009);
(h) HD 1219-0312, (Hayek et al., 2009); (i) CS 22953-003,
(François et al., 2007); (j) HD 2252-4225, (Mashonkina et al.,
2014); (k) LAMOST J110901.22+075441.8, (Li et al., 2015);
(l) RAVE J203843.2-002333, (Placco et al., 2017); (m) 2MASS
J09544277+5246414, (Holmbeck et al., 2018). Bottom panel:
mean abundance di↵erences for the 13 stars with respect to
the solar system r-process values.

However, the growing literature on abundance analyses
of VMP stars has added to our knowledge of the aver-
age r-process pattern, and has served to highlight depar-
tures from that pattern. Additions to the observational
results since the review of Sneden et al. (2008) include
Roederer et al. (2010b, 2014a); Li et al. (2015); Roed-
erer et al. (2016); Roederer (2017); Aoki et al. (2017);

Understand / reproduce 
r-process observablesr-process post-processing

Experimental/theoretical  
properties of nuclei

Nuclear reaction/ 
decay rates,


Fission properties, etc.

Nuclear heating



4

Nuclear mass model
Uncertainty in 
phenomenological/microscopic 
description of ground state

Reaction/decay rates

Mass uncertainty propagated to

• Neutron capture 

• Photodissociation

• β-decay

• β-delayed neutron emission 

• Fission rates & products

Systematic uncertainty in 
the descriptions of reaction/decay

Nuclear reaction network calc.

Uncertainty in

• Treatment of heating

• Assumptions in astrophysical trajectory 

• Unaccounted for reactions (e.g. neutrinos)

Propagation of nuclear physics uncertainty 
in nuclear reaction network calculations

Underlying nuclear physics models / assumptions are not necessarily consistent.
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Common mass models in r-process nucleosynthesis studies

Macroscopic-microscopic models 
Bulk properties + microscopic (shell, pairing, etc.) corrections 
e.g. FRDM (finite-range droplet model), DZ (Duflo-Zucker)  
       WS (Weizsäcker-Skyrme) 

Microscopic model + phenomenological corrections 
e.g. HFB-i (i = 1,…,32) models based on Skyrme-HFB framework 

Microscopic model 
Skyrme-HFB mass models (parameter sets e.g. SkM*, UNEDF0/1, …),  
Covariant DFT 

• How can we take into account the uncertainty of having multiple mass models, 
while considering the performance at the same time?

<latexit sha1_base64="UYweMUHv9OvM7vW5sqgFNIM/R/s="></latexit>

Mass model �AME2020
rms [MeV]

FRDM12 0.57

DZ29 0.41

WS4 0.28

HFB31 0.55

SkM* 7.07

UNEDF1 1.71
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Modelling the uncertainty of mass models

Uncertainty to be modelled 

• Discrepancies from experiments 

• Discrepancies between mass models 

• “Choice” of mass models 
- Quantitative measure of  

which model is “preferred” 

Considerations 

• Most mass models do not come  
with uncertainty estimates 
- Typical BMA is not applicable
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•  is directly relevant to  rates 

• Mass models are expressed as a superposition of  
Gaussians (Gaussian mixture model) 

• Weights and  are inferred from experimental data 
through MCMC

S1n (γ, n)

σ

7

Uncertainty quantification of one neutron separation energy ( )S1n
YS, Dillmann, Kruecken, Mumpower, and Surman, Phys. Rev. C 109, 054301 (2024)
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data. When evaluating the quality of uncertainty esti-327

mates for unseen data, we use the S1n values from the328

AME2003 [46] for constructing our models (we refer to329

them as “training data”) and then test them with the new330

data in the AME2020. In the AME2020, 318 new S1n331

measurements with Z = 16–105 are available compared332

to the AME2003. The new data points in the AME2020333

compared to the AME2003 are shown in Figure 2.334

We consider four di↵erent ways to categorize the S1n335

data. The first category is the data for the whole chart336

of nuclides, which employs all the available experimental337

data in Z = 16–105 at once. The second and third are338

data for each isotopic and isotonic chain, respectively.339

This focuses on the evolution of the S1n values as a func-340

tion of proton and neutron number (isotopic and isotonic,341

respectively). The other category is isobaric (equal mass342

number A), which is relevant to the trend of �-decay343

Q-values.344

The reason for considering EBMA models for each iso-345

topic, isotonic, or isobaric chain is that in many experi-346

mental and theoretical studies, the trend of the data or347

theoretical predictions in a specific chain is often of in-348

terest, and the EBMA model constructed with the data349

for the entire chart of nuclides may not necessarily cap-350

ture such a local trend. It would also allow assessment of351

how well each mass model performs in di↵erent regions352

of the chart of nuclides, and by reviewing the theoretical353

descriptions of the best performing models, i.e. models354

with largest weights, it may potentially provide insight355

into what is required for the more precise modeling of356

nuclear masses. However, we note that optimizing the357

parameters to capture the local trend may cause over-358

fitting. Especially, when EBMA models are constructed359

for each chain across the chart of nuclides, the total num-360

ber of parameters is significantly more than in the case361

where a single EBMA model is constructed using the S1n362

values for the whole chart of nuclides. Therefore, a care-363

ful assessment of the quality of the uncertainty estimate364

is necessary. We will also investigate this aspect in Sec-365

tion III.366

Except for Section IIID where the e↵ect of bias cor-367

rection is investigated, EBMA models are constructed368

without bias correction (denoted as “raw”) for the S1n369

values predicted by each mass model.370

III. RESULTS AND DISCUSSION371

A. Comparison with experimental data372

To investigate the performance of the EBMA model in373

reconstructing the experimental S1n values, an EBMA374

model was constructed using the S1n data of all the nuclei375

with 16  Z  105 from the AME2020 (referred to as376

the “whole chart EBMA model”). The whole chart377

EBMA model was constructed without bias correction of378

the mass models (raw).379

Table I lists the 95 % posterior highest density inter-380

vals (HDIs), which are the narrowest intervals that in-381

clude 95 % of the posterior distributions, of the whole382

chart EBMA model. The posterior weight, which can383

be interpreted as the probability of the model being the384

best one, is the largest for the WS4 model, followed by385

FRDM2012 and DZ29. Further analysis of the weights is386

provided in Section III B.387

The nominal predictions of the EBMA model are taken388

as the mode of the posterior predictive distributions of389

S1n. The posterior distributions of weights and stan-390

dard deviations �k (Equation 3) are determined from391

the AME2020 data through Bayesian inference. Since392

the AME2020 values are used both for fitting and evalu-393

ation of the performance, this analysis reveals how well394

the EBMA method can reproduce known experimental395

data using the constituent mass models.396

Figure 3 shows the deviations of the modes of the
EBMA poterior predictive for S1n from the AME2020
values. The root mean square error (�RMS) shown in the
figure is defined as

�RMS =

sP
(N,Z)

�
SAME2020
1n (N, Z) � SModel

1n (N, Z)
�2

NAME2020
,

(9)

where (N, Z) represents pairs of neutron number N and397

proton number Z of nuclei in the AME2020 whose S1n398

values are used for the fit. NAME is the total number of399

such nuclei (NAME2020 ⌘
P

(N,Z)). For the EBMA model400

shown in Figure 3, which took into account the nuclei401

with 16  Z  105, NAME2020 = 2021. SAME2020
1n (N, Z)402

and SModel
1n (N, Z) are the S1n values for a nucleus (N, Z)403

from the AME2020 and the mode of the posterior predic-404

tive distribution of S1n given by a EBMA model (or the405

nominal prediction of a specific mass model in Table I),406

respectively.407

The value of �RMS of the whole chart EBMA model408

(Figure 3 panel (a)) shows a slightly better �RMS409

(0.229 MeV) than the best performing model, which is410

TABLE I. 95 % posterior highest density intervals (HDI) of
the EBMA weights and standard deviations (variances), fitted
with all the AME2020 S1n data in 16  Z  105 (referred to
as “whole chart” in the text). The notation (a, b) denotes an
interval with a being the lower bound and b being the upper
bound, respectively. �RMS (defined in Equation 9) shows the
root mean square error of each mass model with respect to
the same AME2020 data. Bias correction of mass models was
not performed (raw).

Mass model
(raw)

Weight
Standard
deviation

�RMS [MeV]

WS4 [6] (0.459, 0.596) (0.183, 0.214) 0.239
FRDM12 [2] (0.143, 0.251) (0.129, 0.174) 0.312

DZ29 [7] (0.113, 0.229) (0.125, 0.245) 0.271
KUTY05 [44] (0.034, 0.130) (0.140, 0.322) 0.753
HFB31 [10] (0.000, 0.027) (0.183, 0.214) 0.428
ETFSI2 [45] (0.000, 0.027) (0.026, 0.761) 0.828
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Properties of the model
• Gaussian (scale) mixture model 

 

•  is the width of the Gaussian as a component of the mixture model 

• Model variance         = inter-model variance        + within-model variance 

p(S1n ∣ M1, …, MK) =
K

∑
k=1

wk 𝒩(μk, σk)

σk

Var(S1n ∣ M1, …, MK) =
K

∑
k=1

wk (Mk −
K

∑
l=1

wlMl)
2

+
K

∑
k=1

wkσk2

Weight Gaussians representing  
mass models  
and errors

Mass modelsPredictive  
quantity
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Quantified uncertainty
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• The Gaussian mixture can model 
the increasing uncertainty towards 
the neutron-rich region. 

• Best result is obtained when  
the whole chart is used for inference.
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Discussion

• The method quantifies the uncertainty of the “choice” from  
a set of mass models you consider, based on the performance of the mass model. 

• The model based on AME2003 provides adequate uncertainty estimates for  
new data in AME2020. 
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Comparison of different methods
• This work: Modelling uncertainty with a Gaussian mixture model 

➡ Average the predictive densities 

➡ The model parameters (weights etc.) are global, i.e. same for all nuclei
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Comparison of different methods
• This work: Modelling uncertainty with a Gaussian mixture model 

➡ Average the predictive densities 

➡ The model parameters (weights etc.) are global, i.e. same for all nuclei 

• Bayesian Model Mixing: Kejzlar et al., Sci. Rep. 13: 19600 (2023) 

➡ Average the predictions  

➡ The model parameters can be local.

7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19600  |  https://doi.org/10.1038/s41598-023-46568-0

www.nature.com/scientificreports/

BMA versus global mixtures
The BMA evidence integrals were calculated on the evidence dataset by means of Monte Carlo (MC), Laplace 
approximations, and in a closed form under conjugate priors. We denote the corresponding BMA variants as 
follows: BMA(MC), BMA(Lap) and BMA(ex), respectively (see “Methods” section for the calculations of BMA 
weights). In Table 2, we see that the model weights produced by BMA are consistent across all three evidence 
computation approaches, irrespective of whether the systematic correction has been applied. Averaging corrected 
models is more democratic as compared to the raw models: this is expected since the GP-based δf ,k corrections 
fit the training data closely irrespective of the theoretical model. Still, the BMA testing rms with uncorrected 
and corrected models are very similar, with a slight preference for the uncorrected models.

The global mixtures of uncorrected models are generally slightly outperforming BMA on both training and 
testing datasets (see Table 1). This is in fact expected, given that these weights are designed to maximize the 
predictive power of the model mixture. Indeed, the GBMM+L model is the Bayesian counterpart to a frequentist 
linear regression against the different nuclear model predictions that minimizes the rms on the training set. This 
principle still holds despite the uniform prior used for the GBMM+L model which is very informative and plays 
a regularizing role that reduces overfitting and favors mixing. We can see that the Dirichlet mixture model yields 
very similar weights, with the benefits of having its weights natively located on the simplex. This comparison of 
global weights already speaks in favour of ruling out BMA for the purpose of combining imperfect models, in 
the favor of a Bayesian Dirichlet model. Table 1 also shows the posterior mean of the noise scale parameter σ 
for comparison. As a rule of thumb, a statistical model with a conservative (liberal) uncertainty quantification 
(UQ) would have σ above (below) the test rms, and a statistical model with high-fidelity UQ has σ close to the 
test rms. A more comprehensive view of UQ that reflects the fully propagated prediction uncertainty can be 
gleaned from Fig. 3 that shows the empirical coverage  probability46,47 (ECP). Each curve in Fig. 3 corresponds 
to the proportion of predictions in the testing dataset falling into the respective credible intervals (equal-tailed 
credible intervals). If the ECP curve closely follows the diagonal, then the actual fidelity of the credible interval 
corresponds to the nominal value. Thus we see that the  GBMM has both a superior prediction performance and 
a better UQ then BMA and individual models.

Global versus local mixtures
The posterior mean of the LBMM+GPD weights are shown in Fig. 4. The same plots but for LBMM+GLD are 
given in the Supplementary Information. As discussed earlier, mixing models locally corrected for systematic 
errors is highly susceptible to overfitting and we therefore focus on uncorrected models, i.e. without δf  . Both 
LBMM variants show the dominance of the well-fitted HFB-24 mass model throughout the nuclear landscape. 
As expected, the simplistic linear dependence of weights ω on (Z, N) in the GLD variant is insufficient to fully 
capture the complex local behaviour of the mass models learned by a more flexible GLD variant. While the 
HFB-24 mass model dominates, the final LBMM+GPD results involve other models, primarily FRDM2012, 
UNEDF0, and SkM∗ . The weight distribution naturally depends on the choice of models involved in the analysis. 
This suggests, that a preselection of diversified models to be used in LBMM could also be considered beforehand.

In terms of the rms deviations, the GPD variant does better than the GLD local mixture, which reflects the 
ability of the GPD to capture the local performance of mass models. Local mixtures perform better than global 
mixtures on the training set, and than BMA on both training and testing sets; however they fall slightly behind 
global mixtures on the testing set. We attribute this to the difficult tuning of the statistical model which is very 

Figure 4.  Posterior means of the local model weights in the LBMM+GPD variant across the nuclear landscape.
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Comparison of different methods
• This work: Modelling uncertainty with a Gaussian mixture model 

➡ Average the predictive densities 

➡ The model parameters (weights etc.) are global, i.e. same for all nuclei 

• Bayesian Model Mixing: Kejzlar et al., Sci. Rep. 13: 19600 (2023) 

➡ Average the predictions  

➡ The model parameters can be local. 

• Bayesian Model Combination: Giuliani et al. Phys. Rev. Res., 6: 033266 (2024) 

➡ Average the predictions  

➡ Redundant models are eliminated through PCA.

MODEL ORTHOGONALIZATION AND BAYESIAN FORECAST … PHYSICAL REVIEW RESEARCH 6, 033266 (2024)

50 100 150 200 250
A

−10

−9

−8

−7

−6

−5

−4

E /
A
(M
eV
)

(a)

5 10 15
Component j

10−2

10−1

100

Si
ng
ul
ar
V
al
ue
s j
/s
1

(b)

0.0 0.5

−0.4

−0.2

0.0

0.2

ν1

ν 2

Perfect

Good

Inter.

Bad

0 5 10 15
PC kept (p)

100

101

102

R
M
SE
(M
eV
)

f †(X tr0 )
f †(X va0 )
f †(X te0 )
BMC(X tr0 )
BMC(X te0 )

FIG. 2. Illustration of S3 of Table I. (a) Forecasts of the binding energy per nucleon produced by 19 different models: one perfect model
(black), three good models (blue), five intermediate models (green), and ten bad models (red). The spread of the results comes from the noise
terms added. The inset shows the projection ν (k)

j defined in Eq. (7) for each of the 19 models onto the first two principal components, clearly
identifying the existence of three model classes, with the perfect model and three good models being nearly aligned. (b) Decay of the singular
values s j . The inset shows the evolution of the RMSE (15) for the training (cyan blue squares), validation (yellow stars), and testing (dark
red circles) datasets as the number of principal components kept in the expansion (8) is increased (zero corresponds to φ0). The BMC + PCA
results are marked by solid lines. The dashed lines show the RMSE obtained when combining all 19 models without projecting on principal
components (pure BMC), which shows signs of overfitting: lower RMSE, training dataset; higher RMSE, testing set.
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FIG. 3. Case study II results. (a) Training (squares), validation (stars), and testing (circles) datasets of binding energies of 629 even-even
nuclei used in this paper. The stable isotopes are marked by small black squares. (b) Projections ν1 and ν2 of 15 realistic models of the nuclear
binding energy into the first two principal components. This representation allows us to visualize intermodel relationships. (c) Similar to
Fig. 2(b) but for the realistic mass models. The colors and symbols follow the same convention as in panel (a), with solid lines representing
the BMC + PCA model of Eq. (8) and dashed lines representing the BMC of Eq. (3) with f0 = 0. (d) Distribution of the weights ωk for the
individual models in the expansion (9) in the unconstrained (top) and simplex-constrained (bottom) settings [see Eq. (2)]. The vertical error
bars represent a 95% region obtained from the sampled posterior.
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Application to mass excess

• Uncertainty quantification of mass excess 

➡ Propagation to ,  and other relevant quantities for the r-process 

➡ Challenging due to the large spread in the neutron-rich region. 
(inter-model variance >> within-model variance ) 

➡ Parametric modelling of the within-model variance may be necessary.
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Summary and outlook

• Gaussian mixture model used to quantify the uncertainty of . 

• This method averages the predictive densities, rather than the predictions. 

• The variance can naturally incorporate  
the spread between the models into the uncertainty. 

• There is still work to be done before it can be applied to the r-process.

S1n
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Nuclear Reaction Network
One-nucleus Two-nucleus Three-nucleus reaction

• More than 5000 species involved for the rapid neutron capture process.


• Inputs:

- Nuclear: reaction/decay rates, masses, etc.

- Astro: Temporal evolution of  and , and initial 


• Outputs:  

- Time evolution and final ( ) values of   
- energy release 

• Typical computation time: a few minutes to hours. 

➡ Still too costly for Bayesian inference

T ρ Yi

t → ∞ Yi
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tain light r-process elements with a negligible mass frac-
tion of lanthanides/actinides Xlan . 10�4 (Kasen et al.,
2017). The mass fraction of lanthanides/actinides neces-
sary to account for the reddening of the spectra has been
inferred to be Xlan ⇠ 10�3–10�2 (Kasen et al., 2017;
Tanaka et al., 2017; Waxman et al., 2018) and hence con-
tains both light and heavy r-process material assuming
solar proportions. The purple component corresponds
to ejecta with a small, but non-negligible, lanthanide
fraction. The early blue emission has been interpreted
to originate from the fastest ourter layers of the ejecta
originating from material ejected in the polar direction
and containing exclusively light r-process nuclei (Metzger
and Fernández, 2014; Nicholl et al., 2017b; Drout et al.,
2017) (see however, Waxman et al., 2018; Kawaguchi
et al., 2018, for alternative explanations). The later tran-
sition of the emission colors to the near infrared sug-
gest ejecta containing high r-process elements originat-
ing from the post-merger accretion disk ejecta given their
smaller velocities and larger masses (Siegel and Metzger,
2017; Siegel and Metzger, 2018; Kasen et al., 2017; Perego
et al., 2017a; Fernández et al., 2019; Siegel, 2019) (see
section VI.B). The total amount of ejecta has been es-
timated to be Mej ⇡ 0.03–0.08 M� (Kasen et al., 2017;
Kasliwal et al., 2017; Cowperthwaite et al., 2017; Perego
et al., 2017a; Villar et al., 2017; Waxman et al., 2018;
Kawaguchi et al., 2018). This milestone observation pro-
vided the first direct indication that r-process elements
are produced in neutron-star mergers including estimates
of the amount of ejecta, composition and morphology.
Additional information about kilonova modeling and the
connection of these observations with models of compact
binary mergers can be found in section VII.

III. BASIC WORKING OF THE R-PROCESS AND
NECESSARY ENVIRONMENT CONDITIONS

A. Modeling Composition Changes in Astrophysical
Plasmas

Before discussing the working of the r-process in detail,
a short introduction into the methods should be given,
how the build-up of elements in astrophysical plasmas
can be described and determined. The mechanism to
model composition changes is based on nuclear reactions,
occurring in environments with a given temperature and
density. Integrating the reaction cross section �(E) over
the energy distribution of reacting partners at a given T ,
abbreviated as h�vi(T ), determines the probability for
reactions to happen. For most conditions in stellar evo-
lution and explosions a Maxwell-Boltzmann distribution
is attained (e.g. Clayton, 1968; Rolfs and Rodney, 1988;
Iliadis, 2007; Lippuner and Roberts, 2017). Nuclear de-
cays can be expressed via the decay constant �, related
to the half-life of a nucleus t1/2 via � = ln 2/t1/2. Interac-

tions with photons (photodisintegrations) are described
by the integration of the relevant cross section over the
energies of the photon Planck distribution for the local
temperature. This results in an e↵ective (temperature-
dependent) “decay constant” �(T ). Reactions with elec-
trons (electron captures on nuclei) (e.g. Fuller et al.,
1980; Langanke and Mart́ınez-Pinedo, 2001; Langanke
and Mart́ınez-Pinedo, 2003; Juodagalvis et al., 2010) or
neutrinos (e.g. Langanke and Kolbe, 2001, 2002; Kolbe
et al., 2003) can be treated in a similar way, also re-
sulting in e↵ective decay constants �, which can depend
on temperature T and density ⇢ (determining for elec-
trons whether degenerate or non-degenerate Fermi dis-
tributions are in place). The �’s for neutrinos require
their energy distributions (Tamborra et al., 2012) from
detailed radiation transport, not necessarily reflecting
the local conditions (see e.g. Liebendörfer et al., 2005,
2009; Richers et al., 2017; Janka, 2017b; Burrows et al.,
2018; Pan et al., 2019).

All these reactions contribute to changes of the abun-
dances Yi, related to number densities ni = ⇢Yi/mu and
mass fractions of the corresponding nuclei via Xi = AiYi,
where Ai is the mass number of nucleus i,

P
i Xi = 1, ⇢

denotes the density of the medium, and mu the atomic
mass unit. The reaction network equations for the time
derivatives of the abundances Yi include three types of
terms (e.g., Hix and Thielemann, 1999)

dYi

dt
=

X

j

P i
j �jYj +

X

j,k

P i
j,k

⇢

mu
hj, kiYjYk (1)

+
X

j,k,l

P i
j,k,l

⇢2

m2
u

hj, k, liYjYkYl.,

summing over all reaction partners related to the dif-
ferent summation indices. The P’s include an integer
(positive or negative) factor N i (appearing with one,
two or three lower indices for one-body, two-body, or
three-body reactions), describing whether (and how of-
ten) nucleus i is created or destroyed in this reaction.
Additional correction factors 1/m! are applied for two-
body and three-body reactions in case two or even three
identical partners are involved. This leads to P i

j = N i
j ,

P i
j,k = N i

j,k/m(i, j)!, or P i
j,k,l = N i

j,k,l/m(i, j, k)!. m(i, j)
is equal to 1 for i 6= j and 2 for i = j, m(i, j, k) can have
the values 1 (for non-identical reaction partners), 2 for
two identical partners, and 3 for the identical partners.
Thus, this (additional) correction factor is 1 for non-
identical reaction partners, 1/2=1/2! for two identical
partners or even 1/6=1/3! for three identical partners.
The �’s stand for decay rates (including decays, photodis-
integrations, electron captures and neutrino-induced re-
actions), hj, ki for h�vi of reactions between nuclei j and
k. Although in astrophysical environments true three-
body reactions are negligible, a sequence of two two-body
reactions — with an intermediate extremely short-lived
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Reducing the computational cost of  
reaction network calculations with an ANN emulator

Simultaneously vary 
• -decay half-lives 

•  (propagated to  
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A. Modeling Composition Changes in Astrophysical
Plasmas

Before discussing the working of the r-process in detail,
a short introduction into the methods should be given,
how the build-up of elements in astrophysical plasmas
can be described and determined. The mechanism to
model composition changes is based on nuclear reactions,
occurring in environments with a given temperature and
density. Integrating the reaction cross section �(E) over
the energy distribution of reacting partners at a given T ,
abbreviated as h�vi(T ), determines the probability for
reactions to happen. For most conditions in stellar evo-
lution and explosions a Maxwell-Boltzmann distribution
is attained (e.g. Clayton, 1968; Rolfs and Rodney, 1988;
Iliadis, 2007; Lippuner and Roberts, 2017). Nuclear de-
cays can be expressed via the decay constant �, related
to the half-life of a nucleus t1/2 via � = ln 2/t1/2. Interac-

tions with photons (photodisintegrations) are described
by the integration of the relevant cross section over the
energies of the photon Planck distribution for the local
temperature. This results in an e↵ective (temperature-
dependent) “decay constant” �(T ). Reactions with elec-
trons (electron captures on nuclei) (e.g. Fuller et al.,
1980; Langanke and Mart́ınez-Pinedo, 2001; Langanke
and Mart́ınez-Pinedo, 2003; Juodagalvis et al., 2010) or
neutrinos (e.g. Langanke and Kolbe, 2001, 2002; Kolbe
et al., 2003) can be treated in a similar way, also re-
sulting in e↵ective decay constants �, which can depend
on temperature T and density ⇢ (determining for elec-
trons whether degenerate or non-degenerate Fermi dis-
tributions are in place). The �’s for neutrinos require
their energy distributions (Tamborra et al., 2012) from
detailed radiation transport, not necessarily reflecting
the local conditions (see e.g. Liebendörfer et al., 2005,
2009; Richers et al., 2017; Janka, 2017b; Burrows et al.,
2018; Pan et al., 2019).

All these reactions contribute to changes of the abun-
dances Yi, related to number densities ni = ⇢Yi/mu and
mass fractions of the corresponding nuclei via Xi = AiYi,
where Ai is the mass number of nucleus i,

P
i Xi = 1, ⇢

denotes the density of the medium, and mu the atomic
mass unit. The reaction network equations for the time
derivatives of the abundances Yi include three types of
terms (e.g., Hix and Thielemann, 1999)

dYi

dt
=

X

j

P i
j �jYj +

X

j,k

P i
j,k

⇢

mu
hj, kiYjYk (1)

+
X

j,k,l

P i
j,k,l

⇢2

m2
u

hj, k, liYjYkYl.,

summing over all reaction partners related to the dif-
ferent summation indices. The P’s include an integer
(positive or negative) factor N i (appearing with one,
two or three lower indices for one-body, two-body, or
three-body reactions), describing whether (and how of-
ten) nucleus i is created or destroyed in this reaction.
Additional correction factors 1/m! are applied for two-
body and three-body reactions in case two or even three
identical partners are involved. This leads to P i

j = N i
j ,

P i
j,k = N i

j,k/m(i, j)!, or P i
j,k,l = N i

j,k,l/m(i, j, k)!. m(i, j)
is equal to 1 for i 6= j and 2 for i = j, m(i, j, k) can have
the values 1 (for non-identical reaction partners), 2 for
two identical partners, and 3 for the identical partners.
Thus, this (additional) correction factor is 1 for non-
identical reaction partners, 1/2=1/2! for two identical
partners or even 1/6=1/3! for three identical partners.
The �’s stand for decay rates (including decays, photodis-
integrations, electron captures and neutrino-induced re-
actions), hj, ki for h�vi of reactions between nuclei j and
k. Although in astrophysical environments true three-
body reactions are negligible, a sequence of two two-body
reactions — with an intermediate extremely short-lived

Solve nuclear reaction  
network ODE:
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Reducing the computational cost of  
reaction network calculations with an ANN emulator
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FIG. 2 Solar r-process abundances as determined by Cowan
et al. (1991) and Goriely (1999). The largest uncertainties
are clearly visible for A . 100 (weak s process region) and
around lead.

its overall neutron-capture element level is depressed rel-
ative to Fe (Sneden and Parthasarathy 1983, see also the
more extensive analysis of Honda et al. 2006). An ini-
tial abundance survey in metal-poor (MP) stars (Gilroy
et al., 1988) considered 20 red giants, finding a common
and easily spotted pattern of increasing overabundances
from Ba (Z = 56) to Eu (Z = 63) among the rare-
earth elements. With better echelle spectrographic data
came discoveries of many more r-process-rich stars, lead-
ing Beers and Christlieb (2005) to sub-classify them as
“r-I” with 0.3  [Eu/Fe]  +1.0 and [Ba/Eu] < 0, and
as “r-II” with [Eu/Fe] > +1.0 and [Ba/Eu] < 0.

The most detailed deconvolution of abundances into
nucleosynthetic contributions exists for the solar system,
as we have accurate abundances down to the isotopic
level as a result of meteoritic and solar atmospheric mea-
surements (e.g. Cameron, 1959; Asplund et al., 2009;
Lodders et al., 2009, see Fig. 1). Identifying the r-
process contributions to the solar system neutron-capture
abundances is usually accomplished by first determining
the s-process fractions, (e.g. Käppeler, 1999; Arlandini
et al., 1999; Burris et al., 2000; Käppeler et al., 2011).
The remaining (residual) amount of the total elemental
abundance is assumed to be the solar r-process contri-
bution (see Figures 1 and 2). Aside from the so-called
p-process (Arnould and Goriely, 2003; Rauscher et al.,
2013; Nishimura et al., 2018) that accounts for the minor
heavy element isotopes on the proton-rich side of the val-
ley of instability, as well as the ⌫-process (Woosley et al.,
1990) and the ⌫p-process (Fröhlich et al., 2006b), only
the s and r-processes are needed to explain nearly all of
the solar heavy element abundances.

Early observations of CS 22892-052 (Sneden et al.,
1994, 2003) and later CS 31082-001 (Hill et al., 2002;
Siqueira Mello et al., 2013) and references therein), in-
dicated a “purely” or “complete” solar system r-process
abundance pattern (see Figure 3). The total abundances

of these, mostly rare-earth, elements in the stars were
smaller than in the Sun but with the same relative pro-
portions, i.e., scaled. This indicated that these stars, that
likely formed early in the history of the Galaxy, experi-
enced already a pollution by a robust r-process.

!"#$%&'()$*+,-'.

FIG. 3 Top panel: neutron-capture abundances in 13 r-
II stars (points) and the scaled solar-system r-process-only
abundances of (Siqueira Mello et al., 2013), mostly adopted
from (Simmerer et al., 2004). The stellar and solar sys-
tem distributions have been normalized to agree for ele-
ment Eu (Z = 63), and than vertical shifts have been ap-
plied in each case for plotting clarity. The stellar abundance
sets are: (a) CS 22892-052, (Sneden and Cowan, 2003); (b)
HD 115444, (Westin et al., 2000); (c) BD+17 3248, (Cowan
et al., 2002); (d) CS 31082-001, (Siqueira Mello et al., 2013);
(e) HD 221170, (Ivans et al., 2006); (f) HD 1523+0157,
(Frebel et al., 2007); (g) CS 29491-069, (Hayek et al., 2009);
(h) HD 1219-0312, (Hayek et al., 2009); (i) CS 22953-003,
(François et al., 2007); (j) HD 2252-4225, (Mashonkina et al.,
2014); (k) LAMOST J110901.22+075441.8, (Li et al., 2015);
(l) RAVE J203843.2-002333, (Placco et al., 2017); (m) 2MASS
J09544277+5246414, (Holmbeck et al., 2018). Bottom panel:
mean abundance di↵erences for the 13 stars with respect to
the solar system r-process values.

However, the growing literature on abundance analyses
of VMP stars has added to our knowledge of the aver-
age r-process pattern, and has served to highlight depar-
tures from that pattern. Additions to the observational
results since the review of Sneden et al. (2008) include
Roederer et al. (2010b, 2014a); Li et al. (2015); Roed-
erer et al. (2016); Roederer (2017); Aoki et al. (2017);

N = 82
N = 126

From Cowan et al. (2021), Rev. Mod. Phys. 93, 015002

BRIKEN REP β-decay measurement: G. Kiss, A. Vitéz-Sveiczer, YS, et al. (2022) APJ, 936:107

Rare earth peak



19ANN architecture
• Neural architecture search (NAS) + manual tuning 

to find the optimal architecture. 

 

• Trained on 300k samples.

Emulation of the calculations of final r-process abundance patterns with a neural network13

figures shows the deviations of the output of the emulator (log Y emu
A ) from the original385

(PRISM) calculations (log Y orig
A ), relative to the original calculations, defined as386

y ⌘ log Y emu
A � log Y orig

A

log Y orig
A

. (11)387

The �y shown in the bottom panel is the standard deviation of y, calculated using388

the entire 10k test samples. For the neutron star (NS) merger scenario, the standard389

deviation of the value y is �y = 0.011 (1.1%). For the hot wind scenario, it is � = 0.02390

(2%). The larger variation of the abundances in the hot wind scenario is most likely391

because the (n, �) ⌧ (�, n) equilibrium is established, which is a↵ected by the neutron392

separation energies. In the NS merger scenario, due to its extremely neutron-rich393

and cold condition, the path of the r-process nucleosynthesis is pushed all the way394

to the neutron dripline where Sn ⇠ 0. Therefore, the photodissociation rates are highly395

suppressed due to Eq. 2 and the final abundance pattern is less a↵ected by the variation396

of the Sn values of the nuclei that are far from the dripline.397

The main advantage of using emulators is their speed. While a nuclear reaction398

network calculation is not an extremely computationally expensive calculation, a single399

run of PRISM for the neutron star merger scenario takes roughly 400 seconds on an400

Intel Xeon CPU E5-2683 v4, available on the compute cluster Graham of the Digital401

Research Alliance of Canada. Multiple calculations can be run independently in parallel,402

but each run requires a compute core and about 4 GB of memory. On the other hand,403

obtaining a single abundance pattern from our emulator only takes about 0.02 seconds404

on average per evaluation over 10k evaluations, using a NVIDIA Tesla P100 GPU, also405

available on Graham. For a single abundance calculation, this is a speed-up by a factor406

of 20,000. Furthermore, returning outputs for multiple input samples is also e�cient—it407

takes about 6 second to predict 10k abundance patterns for the test data set.408

4.3. Uncertainty Quantification409

Uncertainty quantification of ANN predictions has been performed using deep ensembles410

[23]. The top panel of Figure 4 shows an example of the uncertainty quantification411

Table 1. Architecture of the neural network optimized by neural architecture search
then by hand.

Layer No. Layer type Activation Kernel size No. of filters No. of units

1 Convolutional ReLU (3,3) 128 —

2 Convolutional ReLU (3,3) 128 —

3 Convolutional ReLU (3,3) 128 —

4 Convolutional ReLU (3,3) 128 —

5 Flatten — — — —

6 Fully connected ReLU — — 1024

7 Fully connected Linear — — 31
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Performance of the emulator

< 5% error on log scale for unseen data 

Original Emulated

YS et al. arXiv 2412.17918 (2025), submitted to J. Phys. G

• ~8 seconds to generate 10k samples 
with a NVIDIA P100 GPU 

• It can be used in various tasks 

- Uncertainty propagation 

- Sensitivity analysis  
with correlated effect 
e.g. Kiss, Vitéz-Sveiczer, YS, et al. (2022) 
       APJ, 936:107 

- Inverse problems 
e.g.  
 

Mumpower et al. (2017)  
J. Phys. G: Nucl. Part. Phys. 44 034003 
 

Vassh et al. (2021) 
ApJ 907 98
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Hypothetical uncertainty reduction with FRIB
The bands represent  intervals±1σ
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Towards a more complete emulator

• Emulation of the complete abundance pattern 

• Emulation of the time evolution of abundances 

• Handle a wider variety of nuclear physics inputs 

• Astrophysical conditions as input 

• Development underway 
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Summary
• Bayesian methods for uncertainty quantification in the presence of multiple models 

• Emulators for r-process calculations 

• Development of uncertainty-quantified, microscopic datasets for the r-process studies 

• Development of a suite of emulators to enable uncertainty quantification,  
sensitivity analyses, and inverse problems  

• Inference of neutron-rich nuclear properties from the r-process observables 

Long-term goals

Thank you for your attention!
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Backup slides
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The EBMA model (1)
• Prior for weights:  

• Prior for variance:  

• Likelihood:  

• Posterior: 

p(σk) = λ exp(−λσk), k = 1, …, K

Bias correction

In constructing EBMA models, although not strictly necessary, Ref. [202] linearly
corrects the bias of the prediction of each model, as shown in Equation 2.3. Since
most mass models are already fit to experimental data, the values of the bias-
correction coefficients are expected to be ak ⇠ 0 and bk ⇠ 1, where the original
prediction of the model is obtained when ak = 0 and bk = 1.

Ref. [202] suggests that ak and bk for each k = 1, . . . ,K are determined by linear
regression. Another way to determine these parameters ak and bk is by Bayesian
linear regression and taking the maximum a posteriori (MAP) values, which is a
slightly more probabilistic treatment. However, in our case, the two approaches
yield virtually identical values.

Bayesian inference

The parameters of interest in our statistical inference are the weights wk(k = 1, . . . ,K)

and the standard deviations of the normal distributions that correspond to each of
the theoretical mass models in the ensemble. Therefore, prior distributions for the
parameters must be specified. In general, we try to choose the prior distributions
to be as weakly informative as possible. For the weights, since the weights have to
sum up to one: ÂK

k=1 wk = 1, we model the parameters with a Dirichlet distribution
of order K, which meets this requirement. Therefore, the prior for the weights is

p(w1,w2, . . . , wk) = Dirichlet(w1,w2, . . . , wk | a1,a2, . . . , ak)

=
G
�
ÂK

k=1 ak
�

’K
k=1 G(ak)

K

’
k=1

wak�1
k , (2.4)

where a1,a2, . . . , ak are called the “concentration parameters”, and G(·) is the
gamma function1. The concentration parameters of the Dirichlet distribution are
set to 1 to ensure that the prior distributions are only weakly informative. The prior
distributions for the standard deviations are chosen to be exponential distributions
with the rate parameters equal to 1, which has been suggested to be one of the
weaker priors [164].

1G(z) ⌘
R •

0 tz�1e�tdt.

73

with α1, …, αk = 1

The likelihood of the normal mixture model is defined as

L(w1, . . . , wK , s2
1 , . . . , s2

K)

= ’
n,p

 
K

Â
k=1

wkgk(Dn,p | mk,n,p)

!
, (2.5)

where the subscripts n and p represent the neutron and proton number of the nuclei
where the observations exist. In practice, the logarithm of the likelihood (log-
likelihood) is often used for computation to avoid numerical problems.

With the prior distributions and the likelihood function, it is now possible to
formulate the posterior distributions for the parameters of the EBMA model.

p(www,sss222 | D) µ L(www,sss222) p(www) p(sss222), (2.6)

where www = w1, . . . ,wK and sss222 = s2
1 , . . . ,s2

K and D denote observational data. The
prior distributions are denoted as p(www) and p(s2), respectively.

Predictive variance

In EBMA models, the uncertainty of the quantity of interest is provided in the
form of variance of the posterior predictive distribution. Based on Ref.[202] but
reflecting the fact that our sk depends on model k, the predictive variance can be
written as

Var(D | m1,m2, . . . ,mK) =
K

Â
k=1

wk

 
(ak +bkmk)�

K

Â
k1

wk(ak +bkmk)

!2

+
K

Â
k=1

wks2
k , (2.7)

where the first term corresponds to the spread of predictions by the member mass
models of the ensemble, and the second term corresponds to the expected deviation
from the observations of each mass model, weighted by the posterior weights.
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K and D denote observational data. The
prior distributions are denoted as p(www) and p(s2), respectively.

Predictive variance

In EBMA models, the uncertainty of the quantity of interest is provided in the
form of variance of the posterior predictive distribution. Based on Ref.[202] but
reflecting the fact that our sk depends on model k, the predictive variance can be
written as

Var(D | m1,m2, . . . ,mK) =
K

Â
k=1

wk

 
(ak +bkmk)�

K

Â
k1

wk(ak +bkmk)

!2

+
K

Â
k=1
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k , (2.7)

where the first term corresponds to the spread of predictions by the member mass
models of the ensemble, and the second term corresponds to the expected deviation
from the observations of each mass model, weighted by the posterior weights.
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The EBMA model (2)
• Predictive variance:  

- First term: spread of predictions by the member mass models of the 
ensemble,  

- Second term: deviation from the observations of each mass model  
within the ensemble, weighted by the posterior weights. 

4

2. Bayesian inference194

The parameters of interest in our statistical inference
are the weights wk (k = 1, . . . , K) and the standard de-
viations �k (k = 1, . . . , K) of the normal distributions
that correspond to each of the theoretical mass mod-
els in the ensemble. Therefore, prior distributions for
these parameters must be specified. In general, we try
to choose the prior distributions to be as weakly infor-
mative as possible. For the weights, since they have to

sum up to one
⇣PK

k=1 wk = 1
⌘
, we model the parameters

with a Dirichlet distribution of order K, which naturally
meets this requirement. Dirichlet distribution of order K
has hyperparameters ↵k (k = 1, . . . , K), thus, the prior
distribution is expressed as

p(w1, w2, . . . , wK)

= Dirichlet(w1, w2, . . . , wK | ↵1, ↵2, . . . , ↵K). (4)

We set all the concentration parameters of the Dirichlet195

distribution to 1, which makes the prior distribution uni-196

form for all weights w1, . . . , wK , to represent the belief197

that we do not know which model would perform best.198

The prior distributions for the standard deviations are199

chosen to be exponential distributions with the rate pa-200

rameters equal to 1, which has been suggested to be one201

of the weaker priors [30].202

The likelihood of the normal mixture model is defined
as

L(w1, . . . , wK , �2
1 , . . . , �2

K)

=
Y

(N,Z)

 
KX

k=1

wkgk(�(N,Z) | mk,(N,Z))

!
, (5)

where � is again the quantity of interest (in our case203

S1n), and mk is the model predictions (a vector of S1n204

predicted by the mass model k). The subscript (N, Z)205

represents pairs of neutron number N and proton number206

Z of the nuclei where experimental values exist. In prac-207

tice, the logarithm of likelihood (log-likelihood) is often208

used for computation to avoid numerical problems.209

With the prior distributions and the likelihood func-
tion, it is now possible to formulate the posterior distri-
butions for the parameters of the EBMA model.

p(w,�2 | D) / L(w,�2) p(w) p(�2), (6)

where w = w1, . . . , wK , �2 = �2
1 , . . . , �

2
K , and D denotes210

observational (experimental) data. The prior distribu-211

tions are denoted as p(w) and p(�2), respectively.212

3. Predictive variance213

In EBMA models, the uncertainty of the quantity of
interest can be interpreted in the form of variance of the
posterior predictive distribution. Based on Ref. [19] but

FIG. 2. Comparison of the AME2003 data with the latest
AME2020 data for one-neutron separation energies S1n, il-
lustrated on the chart of nuclides. The blue squares show
the new S1n data in the AME2020 that did not exist in the
AME2003. The S1n values listed in the AME2003 are shown
in orange color, aside from the stable nuclides, shown in black.

reflecting the fact that our �k depends on model k, the
predictive variance can be written as

Var(� | m1, m2, . . . , mK)

=
KX

k=1

wk

 
(mk) �

KX

i=1

wi(mi)

!2

+
KX

k=1

wk�
2
k, (7)

where the first term corresponds to the spread of predic-214

tions by the member mass models of the ensemble, and215

the second term corresponds to the expected deviation216

from the observations of each mass model, weighted by217

the posterior weights. If bias-corrected models predic-218

tions are used, mk is replaced by ak + bkmk.219

4. Di↵erences to related works and discussion of models220

It is worth discussing the key di↵erences between our221

framework and related studies that use the BMA method,222

namely Refs.[22, 23, 31–33]. In their BMA framework,223

the uncertainty quantification of the considered mass224

models is performed by constructing Gaussian Process225

(GP) emulators, which learn the corrections to the mass226

models from the residuals with respect to the observed227

values. Therefore, the quality of the prediction and the228

corresponding uncertainty mainly depend on the perfor-229

mance of the GP emulator. The BMA weights are calcu-230

lated either based on some criteria such as nuclei being231

bound or the performances of each mass model on the232

test data. One of the drawbacks of this method is that233
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1 , . . . , �2

K)

=
Y

(N,Z)

 
KX

k=1

wkgk(�(N,Z) | mk,(N,Z))

!
, (5)

where � is again the quantity of interest (in our case203

S1n), and mk is the model predictions (a vector of S1n204

predicted by the mass model k). The subscript (N, Z)205

represents pairs of neutron number N and proton number206

Z of the nuclei where experimental values exist. In prac-207

tice, the logarithm of likelihood (log-likelihood) is often208

used for computation to avoid numerical problems.209

With the prior distributions and the likelihood func-
tion, it is now possible to formulate the posterior distri-
butions for the parameters of the EBMA model.

p(w,�2 | D) / L(w,�2) p(w) p(�2), (6)

where w = w1, . . . , wK , �2 = �2
1 , . . . , �

2
K , and D denotes210

observational (experimental) data. The prior distribu-211

tions are denoted as p(w) and p(�2), respectively.212

3. Predictive variance213

In EBMA models, the uncertainty of the quantity of
interest can be interpreted in the form of variance of the
posterior predictive distribution. Based on Ref. [19] but

FIG. 2. Comparison of the AME2003 data with the latest
AME2020 data for one-neutron separation energies S1n, il-
lustrated on the chart of nuclides. The blue squares show
the new S1n data in the AME2020 that did not exist in the
AME2003. The S1n values listed in the AME2003 are shown
in orange color, aside from the stable nuclides, shown in black.

reflecting the fact that our �k depends on model k, the
predictive variance can be written as

Var(� | m1, m2, . . . , mK)

=
KX

k=1

wk

 
(mk) �

KX

i=1

wi(mi)

!2

+
KX

k=1

wk�
2
k, (7)

where the first term corresponds to the spread of predic-214

tions by the member mass models of the ensemble, and215

the second term corresponds to the expected deviation216

from the observations of each mass model, weighted by217

the posterior weights. If bias-corrected models predic-218

tions are used, mk is replaced by ak + bkmk.219

4. Di↵erences to related works and discussion of models220

It is worth discussing the key di↵erences between our221

framework and related studies that use the BMA method,222

namely Refs.[22, 23, 31–33]. In their BMA framework,223

the uncertainty quantification of the considered mass224

models is performed by constructing Gaussian Process225

(GP) emulators, which learn the corrections to the mass226

models from the residuals with respect to the observed227

values. Therefore, the quality of the prediction and the228

corresponding uncertainty mainly depend on the perfor-229

mance of the GP emulator. The BMA weights are calcu-230

lated either based on some criteria such as nuclei being231

bound or the performances of each mass model on the232

test data. One of the drawbacks of this method is that233
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28BRIKEN experimental data
 and  of  159–166Pm, 161–168Sm, 165–170Eu, and 167–172Gd  

measured with the BRIKEN detector system (28 isotopes, 9 new  and 28 new ) 
P1n T1/2

T1/2 P1n

7

Figure 4. (Color online) Experimental half-lives derived in the present work (black squares) and taken from the literature
(Wu et al. 2017) (red circles). Lines show the theoretical values from three models (Möller et al. 2019; Marketin et al. 2016;
Ney et al. 2020).

Table 1. Half-lives and �-delayed neutron emission probabilities (P1n) measured in the present work. The half-lives tagged
with an asterisk (*) may include both ground-state and isomeric state decays (for details see text).

Isotope T1/2 P1n Isotope T1/2 P1n Isotope T1/2 P1n Isotope T1/2 P1n

[ms] [%] [ms] [%] [ms] [%] [ms] [%]

159Pm 1648+43
�42  0.6 166Pm 228+131

�112  52 167Sm 334+83
�78  16 170Eu 197+74

�71  24
160Pm⇤ 874+16

�12  0.1 161Sm 4349+425
�441  2.7 168Sm 353+210

�164  21 167Gd 2269+1817
�988  12

161Pm 724+20
�12 1.09+0.11

�0.11
162Sm 3369+200

�303  1.0 165Eu⇤ 2163+139
�120  0.4 168Gd 2947+467

�387  0.8
162Pm 467+38

�18 1.79+0.19
�0.19

163Sm 1744+180
�204  0.1 166Eu 1277+100

�145 0.63+0.17
�0.17

169Gd⇤ 926+95
�102  0.7

163Pm⇤ 362+42
�30 5.00+0.73

�0.74
164Sm 1422+54

�59  0.7 167Eu 852+76
�54 1.95+0.38

�0.38
170Gd 675+94

�75  3
164Pm 280+38

�33 6.18+1.80
�1.79

165Sm 592+51
�55 1.36+0.40

�0.40
168Eu 440+48

�47 3.95+0.83
�0.83

171Gd 392+145
�136  10

165Pm 297+111
�101 13.26+6.23

�6.15
166Sm 396+56

�63 4.38+1.25
�1.38

169Eu 389+92
�88 14.62+5.82

�5.09
172Gd 163+113

�99  50

8

Figure 5. (Color online) Experimental P1n values derived in this work. Lines show the theoretical values from three models
(Möller et al. 2019; Marketin et al. 2016; Minato et al. 2021).

4. ASTROPHYSICAL IMPLICATION OF THE EXPERIMENTAL RESULTS191

Several authors have proposed that during the r-process freeze-out the competition between ��-decays and neutron192

captures shape the REP while the material decays back to stability (Surman et al. 1997; Surman & Engel 2001; Arcones193

& Mart́ınez-Pinedo 2011; Mumpower et al. 2012). Neutron emission following ��-decays of neutron-rich nuclei may194

also have a significant impact on the abundance pattern by providing additional neutrons to the environment and195

changing the mass number of the nuclide. Therefore, it is important to understand the relationship between the196

r-process abundance pattern and nuclear observables, such as �-decay half-lives (T1/2) and �-delayed neutron emission197

probabilities (Pn values).198

4.1. Method199

With respect to the current experimental values and their uncertainties, we perform an uncertainty quantification200

and a variance-based sensitivity analysis (Saltelli et al. 2010) of the calculated r-process abundance pattern. As201

discussed in detail below, by treating the physical quantities of interest, namely T1/2 and P1n, as variable inputs of202

nuclear reaction network calculation, we can assess their influence on the calculated abundance patterns.203

4.1.1. Uncertainty quantification204

Uncertainty quantification reveals how the uncertainties of the nuclear observables collectively translate to the205

uncertainty of the calculated abundance pattern. This has been performed in various previous studies (Mumpower206

T1/2 P1n

New experimental data from BRIKEN

G. Kiss, A. Vitéz-Sveiczer, YS, et al. (2022) APJ, 936:107
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denoted as (g,n)) is established (panel (a) of Figure 2.1). This condition is often
achieved in the early stage of the r-process nucleosynthesis. Under this condition,
the abundance pattern in an isotopic chain (the same proton number Z but different
neutron number N), is determined from the ratio of two neighboring isotopes (Saha
equation) [4, 8]:

Y (N +1,Z)

Y (N,Z)
= nn · G(N +1,Z)

2G(N,Z)
·
✓

A+1
A

◆3/2

·
✓

2p}2

mukT

◆3/2

· exp
✓

Sn(N +1,Z)

kT

◆
, (2.1)

where Y (N,Z) is the abundance of the isotope (N,Z), nn is the neutron number
density, A is the mass number A = N + Z, mu is the nucleon mass, T is the tem-
perature of the environment, and Sn(N,Z) is the one-neutron separation energy
of the nucleus (N,Z). } is the reduced Planck constant and k is the Boltzmann
constant. G(N,Z) is called a partition function of the nucleus (N,Z), defined as
G = Âµ(2Jµ + 1)exp

�
�Eµ/kT

�
, where µ is a label of the state (including the

ground state), Jµ is its spin, and Eµ is its energy. The dependence of the abundance
ratios on nuclear masses is clear through the dependence on the neutron separation
energies, which are the mass (binding energy) differences of the neighboring nuclei
on an isotopic chain. The abundance maximum in the isotopic chain is obtained
when Y (N +1,Z) ' Y (N,Z). Since at neutron magic numbers (e.g., N = 82, 126),
the one-neutron separation energy of the neighboring nuclei Sn(N +1,Z) becomes
significantly smaller than Sn(N,Z), accumulation of material tends to occur at the
magic numbers. In realistic nuclear reaction network calculations, which do not
explicitly assume the (n,g) ⌧ (g,n) equilibrium, the reverse reaction (photodisso-
ciation) rates are calculated via a similar expression, the so-called detailed balance
[11]:

l(g,n) =hsvi(n,g) ·
G(N,Z) ·Gn

G(N +1,Z)
·
✓

A
A+1

◆3/2

·
✓

mukT
2p}2

◆3/2

· exp
✓

�Sn(N +1,Z)

kT

◆
, (2.2)
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 equilibrium(n, γ) ↔ (γ, n)

denoted as (g,n)) is established (panel (a) of Figure 2.1). This condition is often
achieved in the early stage of the r-process nucleosynthesis. Under this condition,
the abundance pattern in an isotopic chain (the same proton number Z but different
neutron number N), is determined from the ratio of two neighboring isotopes (Saha
equation) [4, 8]:

Y (N +1,Z)

Y (N,Z)
= nn · G(N +1,Z)
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·
✓
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mukT
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Sn(N +1,Z)

kT

◆
, (2.1)

where Y (N,Z) is the abundance of the isotope (N,Z), nn is the neutron number
density, A is the mass number A = N + Z, mu is the nucleon mass, T is the tem-
perature of the environment, and Sn(N,Z) is the one-neutron separation energy
of the nucleus (N,Z). } is the reduced Planck constant and k is the Boltzmann
constant. G(N,Z) is called a partition function of the nucleus (N,Z), defined as
G = Âµ(2Jµ + 1)exp

�
�Eµ/kT

�
, where µ is a label of the state (including the

ground state), Jµ is its spin, and Eµ is its energy. The dependence of the abundance
ratios on nuclear masses is clear through the dependence on the neutron separation
energies, which are the mass (binding energy) differences of the neighboring nuclei
on an isotopic chain. The abundance maximum in the isotopic chain is obtained
when Y (N +1,Z) ' Y (N,Z). Since at neutron magic numbers (e.g., N = 82, 126),
the one-neutron separation energy of the neighboring nuclei Sn(N +1,Z) becomes
significantly smaller than Sn(N,Z), accumulation of material tends to occur at the
magic numbers. In realistic nuclear reaction network calculations, which do not
explicitly assume the (n,g) ⌧ (g,n) equilibrium, the reverse reaction (photodisso-
ciation) rates are calculated via a similar expression, the so-called detailed balance
[11]:

l(g,n) =hsvi(n,g) ·
G(N,Z) ·Gn

G(N +1,Z)
·
✓

A
A+1

◆3/2

·
✓

mukT
2p}2

◆3/2

· exp
✓

�Sn(N +1,Z)

kT

◆
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Detailed balance


