Statistical tools for the *r*-process nucleosynthesis studies

Yukiya Saito NP3M Postdoctoral Fellow FRIB, Michigan State University

RIKEN TRIP Symposium 2025-03-10

Rapid neutron capture process (*r*-process)

From Schatz et al. (2022), J. Phys. G: Nucl. Part. Phys. 49 110502

- Responsible for ~50% of the abundance of heavy elements
- High neutron density, temperature can reach > 10 GK
 - Compact binary mergers
 - Some types of core-collapse SNe

- Required nuclear data
 - Nuclear masses
 - Neutron capture & photodissociation
 - β -decay & β -delayed neutron emission
 - Fission

. . .

Contains neutron-rich nuclear physics

r-process post-processing

Understand / reproduce *r*-process observables

Propagation of nuclear physics uncertainty in nuclear reaction network calculations

Nuclear mass model

Uncertainty in phenomenological/microscopic description of ground state

Reaction/decay rates

Mass uncertainty propagated to

- Neutron capture
- Photodissociation
- β -decay
- β -delayed neutron emission
- Fission rates & products

Systematic uncertainty in the descriptions of reaction/decay

Underlying nuclear physics models / assumptions are not necessarily consistent.

Common mass models in *r*-process nucleosynthesis studies

Macroscopic-microscopic models

Bulk properties + microscopic (shell, pairing, et

e.g. FRDM (finite-range droplet model), DZ (Du WS (Weizsäcker-Skyrme)

Microscopic model + phenomenolog

e.g. HFB-i (i = 1,...,32) models based on Skyrn

Microscopic model

Skyrme-HFB mass models (parameter sets e.g. SkM*, UNEDF0/1, ...), Covariant DFT

• How can we take into account the uncertainty of having multiple mass models, while considering the performance at the same time?

tc) corrections		
(0.) = (0.) = (0.)	Mass model	$\sigma_{\mathrm{rms}}^{\mathrm{AME2020}}$ [N
JTIO-ZUCKEr)	FRDM12	0.57
	DZ29	0.41
ical corrections	WS4	0.28
ne-HFB framework	HFB31	0.55
	SkM*	7.07
	UNEDF1	1.71
		-

Modelling the uncertainty of mass models

Uncertainty to be modelled

- **Discrepancies from experiments**
- Discrepancies between mass models
- "Choice" of mass models
 - Quantitative measure of which model is "preferred"

Considerations

- Most mass models do not come with uncertainty estimates
 - Typical BMA is not applicable

Uncertainty quantification of one neutron separation energy (S_{1n})

YS, Dillmann, Kruecken, Mumpower, and Surman, Phys. Rev. C 109, 054301 (2024)

- S_{1n} is directly relevant to (γ, n) rates
- Mass models are expressed as a superposition of Gaussians (Gaussian mixture model)
- Weights and σ are inferred from experimental data through MCMC

Mass model (raw)	Weight	Standard deviation	$\sigma_{ m RMS}$
WS4 [6]	(0.459, 0.596)	(0.183, 0.214)	0.2
FRDM12 [2]	(0.143, 0.251)	(0.129, 0.174)	0.3
DZ29 $[7]$	(0.113, 0.229)	(0.125, 0.245)	0.2
KUTY05 [44]	(0.034, 0.130)	(0.140, 0.322)	0.7
HFB31 [10]	(0.000, 0.027)	(0.183, 0.214)	0.4
ETFSI2[45]	(0.000, 0.027)	(0.026, 0.761)	0.8

- 128
- 828

Properties of the model

Gaussian (scale) mixture model \bullet

- σ_k is the width of the Gaussian as a component of the mixture model
- Model variance = inter-model variance ${ \bullet }$

$$\operatorname{Var}(S_{1n} \mid M_1, \dots, M_K) = \sum_{k=1}^K w_k \left(M_k - \sum_{l=1}^K w_l M_l \right)^2 + \sum_{k=1}^K w_k \sigma_k^2$$

Gaussians representing

mass models and errors

+ within-model variance

Quantified uncertainty

- The Gaussian mixture can model the increasing uncertainty towards the neutron-rich region.
- Best result is obtained when the whole chart is used for inference.

 $1.25 \sum_{i=1}^{n}$ 0.75 **t** 0.50∞ Ze

Discussion

- The method quantifies the uncertainty of the "choice" from
- The model based on AME2003 provides adequate uncertainty estimates for new data in AME2020.

a set of mass models you consider, based on the performance of the mass model.

Comparison of different methods

- This work: Modelling uncertainty with a Gaussian mixture model
 - Average the predictive densities
 - ➡ The model parameters (weights etc.) are global, i.e. same for all nuclei

Comparison of different methods

- This work: Modelling uncertainty with a Gaussian mixture model
 - Average the **predictive densities**
 - The model parameters (weights etc.) are global, i.e. same for all nuclei
- Bayesian Model Mixing: Kejzlar et al., Sci. Rep. 13: 19600 (2023)
 - Average the predictions
 - ➡ The model parameters can be local.

0.21

¹0.00

Comparison of different methods

- Bayesian Model Combination: Giuliani et al. Phys. Rev. Res., 6: 033266 (2024)
 - Average the predictions
 - Redundant models are eliminated through PCA.

Application to mass excess

- Uncertainty quantification of mass excess

 - Challenging due to the large spread in the neutron-rich region. (inter-model variance >> within-model variance σ_k^2)

 \rightarrow Parametric modelling of the within-model variance may be necessary.

\rightarrow Propagation to S_{1n} , Q_R and other relevant quantities for the r-process

Summary and outlook

- Gaussian mixture model used to quantify the uncertainty of S_{1n} .
- This method averages the predictive densities, rather than the predictions.
- The variance can naturally incorporate the spread between the models into the uncertainty.
- There is still work to be done before it can be applied to the *r*-process.

Nuclear Reaction Network

- More than 5000 species involved for the rapid neutron capture process.
- Inputs:
 - Nuclear: reaction/decay rates, masses, etc.
 - Astro: Temporal evolution of T and ρ , and initial Y_i
- Outputs:
 - Time evolution and final $(t \rightarrow \infty)$ values of Y_i
 - energy release
- Typical computation time: a few minutes to hours.
 - **Still too costly for Bayesian inference**

Three-nucleus reaction

Reducing the computational cost of reaction network calculations with an ANN emulator

Reducing the computational cost of reaction network calculations with an ANN emulator

BRIKEN REP β-decay measurement: G. Kiss, A. Vitéz-Sveiczer, YS, et al. (2022) APJ, 936:107

ANN architecture

• Neural architecture search (NAS) + manual tuning to find the optimal architecture.

Layer No.	Layer type	Activation	Kernel size	No. of filters	No. of units
1	Convolutional	ReLU	$(3,\!3)$	128	
2	Convolutional	ReLU	$(3,\!3)$	128	
3	Convolutional	ReLU	$(3,\!3)$	128	
4	Convolutional	ReLU	$(3,\!3)$	128	
5	Flatten				
6	Fully connected	ReLU			1024
7	Fully connected	Linear			31

Trained on 300k samples.

1	9
---	---

Performance of the emulator

 10^{-3} ~8 seconds to generate 10k samples with a NVIDIA P100 GPU unit] [arb. 10^{-1} abundan It can be used in various tasks 10^{-5} Uncertainty propagation Relative - Sensitivity analysis 10^{-6} with correlated effect e.g. Kiss, Vitéz-Sveiczer, YS, et al. (2022) $\begin{array}{c} y = \\ \log Y_A^{\rm orig} \end{pmatrix} / \ \log Y_A^{\rm orig} \end{array}$ APJ, 936:107 0.100.05Inverse problems 0.00e.g. Mumpower et al. (2017) -0.05 $(\log Y_A^{\rm en})$ J. Phys. G: Nucl. Part. Phys. 44 034003 -0.10Vassh et al. (2021) ApJ 907 98

YS et al. arXiv 2412.17918 (2025), submitted to J. Phys. G

Towards a more complete emulator

- Emulation of the complete abundance pattern
- Emulation of the time evolution of abundances

- Handle a wider variety of nuclear physics inputs
- Astrophysical conditions as input

• Development underway

Summary

- Emulators for r-process calculations

Long-term goals

- Development of uncertainty-quantified, microscopic datasets for the *r*-process studies
- Development of a suite of emulators to enable uncertainty quantification, sensitivity analyses, and inverse problems
- Inference of neutron-rich nuclear properties from the r-process observables

Thank you for your attention!

• Bayesian methods for uncertainty quantification in the presence of multiple models

Backup slides

24

The EBMA model (1)

- Prior for weights: $p(w_1, w_2, ..., w_k) = \text{Dirichlet}(w_1, w_2, ..., w_k \mid \alpha_1, \alpha_2, ..., \alpha_k)$ $= \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \prod_{k=1}^{K} w_{k}^{\alpha_{k}-1}, \quad \text{with } \alpha_{1}, \dots, \alpha_{k} = 1$
- Prior for variance: $p(\sigma_k) = \lambda \exp(-\lambda \sigma_k)$
- Likelihood: $L(w_1, \ldots, w_K, \sigma_1^2, \ldots, \sigma_k^2)$ $=\prod_{n,p}\left(\sum_{k=1}^{K}w_kg_k(\Delta_{n,p}\mid m_k)\right)$
- Posterior: $p(w, \sigma^2 | D) \propto L(w, \sigma^2) p(w) p(\sigma^2)$,

$$(k_k), \quad k = 1, \dots, K$$

$$\binom{2}{K}$$

$$(w) p(\sigma^2)$$

25

The EBMA model (2)

• Predictive variance:

 $\operatorname{Var}(\Delta \mid m_1, m_2)$

- ensemble,
- within the ensemble, weighted by the posterior weights.

$$(m_2, \dots, m_K)$$

 $(m_k) - \sum_{i=1}^K w_i(m_i))^2 + \sum_{k=1}^K w_k \sigma_k^2,$

- First term: spread of predictions by the member mass models of the

- Second term: deviation from the observations of each mass model

26

BRIKEN Experimental setup at RIKEN Nishina Center

- Experimental campaign from 2016-2021
- Goal: measure half-lives and neutron-branching ratios of the most neutron-rich isotopes
- Physics results published so far: 153 isotopes between ⁷⁵Ni – ¹⁷²Gd 29 new $T_{1/2}$, 77 new P_{1n} values, 36 new P_{2n} values

BRIKEN experimental data

 P_{1n} and $T_{1/2}$ of ^{159–166}Pm, ^{161–168}Sm, ^{165–170}Eu, and ^{167–172}Gd

measured with the BRIKEN detector system (28 isotopes, 9 new $T_{1/2}$ and 28 new P_{1n})

BRIKEN experimental data

 P_{1n} and $T_{1/2}$ of ^{159–166}Pm, ^{161–168}Sm, ^{165–170}Eu, and ^{167–172}Gd

G. Kiss, A. Vitéz-Sveiczer, YS, et al. (2022) APJ, 936:107

measured with the BRIKEN detector system (28 isotopes, 9 new $T_{1/2}$ and 28 new P_{1n})

Variance-based sensitivity analysis

$(n, \gamma) \leftrightarrow (\gamma, n)$ equilibrium

$$\frac{Y(N+1,Z)}{Y(N,Z)} = n_n \cdot \frac{G(N+1,Z)}{2G(N,Z)} \cdot \left(\frac{A+1}{A}\right)^{3/2} \\ \cdot \left(\frac{2\pi\hbar^2}{m_u kT}\right)^{3/2} \cdot \exp\left(\frac{S_n(N+1,Z)}{kT}\right),$$

Detailed balance

$$\lambda_{(\gamma,n)} = \langle \sigma v \rangle_{(n,\gamma)} \cdot \frac{G(N,Z) \cdot G_n}{G(N+1,Z)} \cdot \left(\frac{A}{A+1}\right)^{3/2} \\ \cdot \left(\frac{m_u kT}{2\pi\hbar^2}\right)^{3/2} \cdot \exp\left(\frac{-S_n(N+1,Z)}{kT}\right),$$

31