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Disclosure

I am a mathematical physicist with no expertise in astrophysics, perturbation
theory or the use of asymptotic methods...

I have no expertise on most of the topics I will cover in my talk today.
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Part I

Prolegomena
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What is Perturbation Theory?

A Preliminary Characterisation:

Perturbation theory deals with systematic methods of organising small
corrections/deformations to well understood (solvable?) models/objects.

Examples:

Physics:

Celestial mechanics.
Theory of waves.
QM (Rayleigh-Schrödinger).
QFT (+ renormalisation).
Adiabatic continuity.
Renormalisation group.
...

Mathematics:

Formal solutions to differential
equations.
Analysis of linear operators.
Stability, Catastrophe and
Deformation theory.
Dynamical systems/KAM theory.
...

4 / 130



Synopsis by way of a Quote:

Barry Mazur, Perturbations, Deformations and Variations (and ”Near Misses”) in
Geometry, Physics and Number Theory

Whatever it leads to, the perturbative strategy is everywhere in mathematics and takes
many forms. ... Some questions become meaningful only when they are treated as
specific instances within a field of closely related questions. Often the landscape of this
larger field, its peculiar features, its ravines and gullies, holds the key to an appropriate
understanding of any of the individual questions. Often that landscape becomes the
focus of new questions.
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The First Example of Perturbation Theory?

6 / 130

James Ferguson,
Astronomy Explained
upon Sir Isaac Newton’s
Principles, Project
Gutenberg, 2019 (1757).

https://www.gutenberg.org/cache/epub/60619/pg60619-images.html

https://www.gutenberg.org/cache/epub/60619/pg60619-images.html


A Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 4 = 0. (1)

Solution 1: by inspection, x has roots at x = ±2.
Perturbative Solution:
Substitute the ansatz

x(ε) =
∑
n∈N

anε
n

into the equation
x2 − εp = 0.

We recover the original equation by taking ε = 41/p, i.e. p ̸= 0.
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A Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 4 = 0. (1)

Solution 1: by inspection, x has roots at x = ±2.
Perturbative Solution:
One finds:

0 =
∑
k∈N

( ∑
m+n=k

aman − δk,p

)
εk

Since this holds for a variable ε we can set the coefficient of each power of ε to zero
identically: ∑

m+n=k

aman = δk,p, ∀m, n ∈ N. (2)

7 / 130



A Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 4 = 0. (1)

Solution 1: by inspection, x has roots at x = ±2.
Perturbative Solution:
Since p ̸= 0:

k = 0 requires m = n = 0 =⇒ a20 = 0 =⇒ a0 = 0.

k = 1 has contributions (m, n) ∈ { (1, 0), (0, 1) } which vanish trivially: p ̸= 1.

k = 2: (m, n) = (1, 1) =⇒ a21 = δ2,p =⇒ a1 = ±1 if p = 2 and a1 = 0 if p ̸= 2.

Recursion of above: p = 2q, aq = ±1, ak = 0 for k ̸= q.
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A Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 4 = 0. (1)

Solution 1: by inspection, x has roots at x = ±2.
Perturbative Solution:
Thus we have roots at:

x±(ε) = ±εq,

where p = 2q. Taking ε = 41/p we find that the equation has roots at ±2 as required.
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So Why Does Perturbation Theory Work (and Why Do We Use It)?
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Thomas Kuhn

https://en.namu.wiki/w/%ED%86%A0%EB%A8%B8%EC%8A%A4%20%EC%BF%A4

Normal science is puzzle solving ac-
tivity within a given paradigm. With
improvements in experimental tech-
nique, data may become available

that shows a deviation from the best
known scientific model. Corrections
must thus be incorporated to ensure
compatibility between prevailing

scientific wisdom and empirical fact.

https://en.namu.wiki/w/%ED%86%A0%EB%A8%B8%EC%8A%A4%20%EC%BF%A4


So Why Does Perturbation Theory Work (and Why Do We Use It)?
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Alexander Grothendieck

https://webusers.imj-prg.fr/~leila.schneps/

grothendieckcircle/photosshurik6.php

The philosophical answer
is too general: here we

are considering a problem
where the solution lies
in a space in which the

polynomials are dense. For
instance, for continuous
functions we have by the

Stone-Weierstrass theorem...

https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/photosshurik6.php
https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/photosshurik6.php


So Why Does Perturbation Theory Work (and Why Do We Use It)?
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Philip W Anderson
Image courtesy of the AIP Emilio Segrè Visual Archives, Physics Today Collection

No, that is just a trivial
mathematical claim! We

can use perturbation theory
because the situation we
care about is adiabatically
connected to a simpler sce-
nario where the perturbative
parameter is absent. Thus
in Fermi liquid theory...



A (Slightly Less) Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 3x + 2 = 0. (3)

Solution 1: by inspection, x has roots at x = 1, 2.
Perturbative Solution:
Substitute the ansatz

x(ε) := lim
N→∞

xN(ε) xN(ε) :=
N∑

n=0

anε
n

into the equation
x2 − 3x + ε = 0.
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A (Slightly Less) Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 3x + 2 = 0. (3)

Solution 1: by inspection, x has roots at x = 1, 2.
Perturbative Solution:
One finds:

0 =
∑
n∈N

( ∑
ℓ+m=n

aℓam − 3an + δn,1

)
εn

Since this holds for a variable ε we can set the coefficient of each power of ε to zero
identically:

an =
∑

ℓ+m=n

aℓam + δn,1, ∀n ∈ N. (4)
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A (Slightly Less) Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 3x + 2 = 0. (3)

Solution 1: by inspection, x has roots at x = 1, 2.
Perturbative Solution:

n = 0: a20 − 3a0 = 0 i.e. a±0 = 0, 3 and x0(2) = 0, 3.

a1 = 2a1a0 + 1, i.e. a±1 = 1, −1/5 and x±1 (2) = 2, 13/5.

a2 = 2a0a2 + a21, a
±
2 = 1, −1/125 and x±2 (2) = 6, 321/125.

...

We have two series, one clearly not approaching any root and another apparently slowly
approaching the root at x = 2.
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A (Slightly Less) Simple Example

Problem:

Find the roots of the following quadratic equation:

x2 − 3x + 2 = 0. (3)

Solution 1: by inspection, x has roots at x = 1, 2.
Perturbative Solution:
Caution: the series typically diverges!

an+1 ∼
∑

ℓ+M=n

aℓam ∼ O(1)(n + 1)a0an an ∼ O(1)an0n! (5)

i.e.

xN(ε) ∼ exp

(
N log

(
N

a0ε

))
. (6)
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Basic Problems of Perturbation Theory

What is it about nature (or physics) that makes perturbation theory useful?

Why is nature not exactly solvable/integrable?
How do distinct scales ‘decouple’ in renormalisation theory.

What is the significance of polynomials for perturbation theory?

Regularity of physical relations.

Why does perturbation theory diverge?

Why does perturbation theory continue to be useful despite diverging?

Do we still have a connection principle like adiabatic continuity for divergent
perturbation theory?

Why is perturbation theory even more useful than it should be?

Resummation techniques show that perturbative expansions encode more
information than originally expected.
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Part II

Solvability, Integrability and their Limits
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Some Caveats (To Be Ignored in the Subsequent)

Solvable ̸= Integrable.

Integrable ̸= Liouville integrable.

Quantum ̸= Quantised.

Quantisation ̸= Deformation quantisation.
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Hitchin’s Characterisation of Integrability

Nigel Hitchin, Introduction to Integrable Systems: Twistors, Loop Groups and
Riemann Surfaces by Hitchin, Segal and Ward

Integrable systems, what are they? It’s not easy to answer precisely. The question can
occupy a whole book ... or be dismissed as Louis Armstrong is reputed to have done
once when asked what jazz was—‘If you gotta ask, you’ll never know!’ ... If we steer a
course between these two extremes, we can say that integrability of a system of
differential equations should manifest itself through some generally recognizable
features:

the existence of many conserved quantities;

the presence of algebraic geometry;

the ability to give explicit solutions.

These guidelines should be interpreted in a very broad sense: the algebraic geometry is
often transcendental in nature, and explicitness doesn’t mean solvability in terms of
sines, exponentials or rational funvtions.
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Liouville Integrability in Classical Mechanics

Definition

Let (M, ω) be a symplectic 2n-manifold—or more generally let (M, {·, ·}) be a
Poisson manifold (phase space). A (Liouville) integrable system is an algebra
A ⊆ C∞(M) such that dim(A) = n and

{f , g} = 0 (7)

for all f , g ∈ C.

Remark

The algebra A is generated by n linearly independent constants of motion
f1 = H, f2, ..., fn. By linearity and anticommutativity of the Poisson bracket, the
integrability condition 7 follows from the requirement that the constants of motion are
in involution:

{fk , fℓ} = 0 ∀k, ℓ = 1, ..., n. (8)
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Liouville Integrability in Classical Mechanics

Theorem (Liouville-Arnold)

Let A be an integrable system in (M, ω) generated by H, f1, ..., fn−1 and let
(q, p) ∈ M be a regular point for the mapping

F = (F , f1, ..., fn) : M → Rn F : (q, p) 7→ (H(q, p), f1(q, p), ..., fn−1(q, p)). (9)

Let T (q, p) = F−1(F (q, p)) denote the level-set of F at F (q, p).

1 T (q, p) is an imbedded n-dim. submanifold of M invariant under the phase flow.

2 If the motion is bounded and of a single system (T (q, p) is compact and
connected) then T (q, p) ∼= Tn i.e. T (q, p) is diffeomorphic to an invariant n-torus.

3 There exist action-angle coordinates (ω, ϕ) for M such that

T (q, p) ∼= {ϕ mod 2π } ϕ̇ = ω ω = ω(F ). (10)

In particular ω is constant on T (q, p).
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Sketch of Proof of the Liouville-Arnold Theorem I

(1) follows from the inverse (implicit) function theorem.

We can construct n linearly independent vector fields

vk = (∇p̃fk ,−∇q̃fk) (11)

(where f0 := H).

Since T (q, p) is defined by ∇q̃fk = ∇p̃fk = 0, the normals to T (q, p) are the
vector fields (∇q̃fk ,∇p̃fk).

But by integrability

vk · (∇q̃fℓ,∇p̃fℓ) = ∇p̃fk∇q̃fℓ −∇q̃fk∇p̃fℓ = {fk , fℓ} = 0 (12)

and the vector fields vk form a tangent basis at each point.
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Sketch of Proof of the Liouville-Arnold Theorem II

Each vector field vk defines an action of R on T (q, p) that generates a natural
flow. T (q, p) is clearly invariant under the flow (since the flow is parallel to
T (q, p) you do not escape T (q, p) by following the flow).

Also since T (q, p) is compact, flowing along vk will eventually lead to a return to
your original position. If τk is the initial return time then the little group at any
point along k is given by { nτk : n ∈ Z } ⊆ R.
T (q, p) is thus naturally seen as a quotient of Rn by a discrete subgroup and
hence a torus.
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Phase Flow of Points on Invariant Tori

Each point exhibits a natural phase flow on the invariant torus under the tangent
vector fields.

In action angle variable ϕ̇ = ω, i.e. we have points circulating the independent
circles of the torus with constant frequency.

If the frequencies are commensurate a point will eventually return to where it
began under the phase flow.

Otherwise the trajectory will be quasiperiodic, densely covering the invariant torus
but never returning to its start point.
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Nearly Integrable Systems

Definition

Let (H0, ω, ϕ) be an integrable system, i.e. H0 = H0(ω), ϕ̇ = ω. A perturbation to the
integrable system (H0, ω, ϕ) is a Hamiltonian system (H, ω, ϕ) such that

H = H0(ω) + εH1(ω, ϕ) + · · · . (13)

A solution to the perturbed system (H, ω, ϕ) consists of a triple (S , ω̃, ϕ̃) with the
following properties:

1 (ω̃, ϕ̃) are new coordinates such that H(ω, ϕ) = H̃(ω̃, ε) for some H̃.

2 S is an analytic function of ε satisfying the following properties:

S = S(ω̃, ϕ, ε) =
∑
n∈N

Snε
n ω = −∂S

∂ϕ
ϕ̃ = −∂S

∂ϕ
(14)

where S0 = ω̃ϕ and the functions Sk(ω̃, ϕ) are periodic in ϕ.
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Nearly Integrable Systems

Remark

With this definition S is the generator of a canonical transformation into new
action-angle variables for the perturbed Hamiltonian system.
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Nearly Integrable Systems
Resonances and Small Divisors

We can try to find a solution to the perturbed system H.

First note that a solution satisfies the following first-order Hamilton-Jacobi
equation:

∇ω̃H0 · ∇ϕS1 + H1(ω̃, ϕ) = H̃1(ω̃) (13)

for some function H̃1 that remains to be determined.

Since H1 is periodic in ϕ we have the Fourier expansion

H1 =
∑
m∈Zn

Hm(ω̃) exp(im · ϕ). (14)

If H̃1 is periodic we then have

H̃1(ω̃) =
1

(2π)n

∫
Tn

dnϕH1(ω̃, ϕ). (15)
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Nearly Integrable Systems
Resonances and Small Divisors

Expanding

S1 =
∑
m ̸=0

S1,m(ω̃) exp(im · ϕ) (16)

gives

S1,m(ω̃) =
Hm(ω̃)

im · ω(ω̃)
. (17)

ω has a resonance at m if:
m · ω = 0. (18)

Clearly S1,m is not defined if ω has a resonance at m. S1 is not defined if we have
sufficiently many m such that ω is near resonance at m.

This is the problem of small divisors.
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KAM Theorem

Definition

A vector ω is resonant iff there is an m ∈ Zn\ { 0 } such that

m · ω = 0. (19)

Otherwise ω is nonresonant.

ω is strongly nonresonant iff there are constants α, β > 0 such that

m · ω ≥ α

|k |β
(20)

for all k ∈ Zn\ { 0 }.
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KAM Theorem

Resonances are both generic but rare. Strong nonresonances are non-generic but
common.

Fact

The resonant vectors are a dense set of measure zero.

The strongly resonant vectors are a nowhere dense set of full measure.
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KAM Theorem

Theorem (KAM)

Let H = H(ε) be a perturbation of an integrable Hamiltonian system, let α ∈ (0,∞)
be sufficiently small and fix β > n − 1. There is a constant δ > 0 such that for any
fixed ε ∈ (0,∞) with

ε < δα2 (19)

the perturbed Hamiltonian system admits a solution defined locally on U × Tn. Every
invariant torus of the unperturbed system with strongly nonresonant frequencies
survives the perturbation and the set of all such tori fills U ×Tn up to a set of measure
O(α).
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Most Classical Systems are Not Integrable
The Ergodicity Problem

A (the?) fundamental assumption in classical statistical mechanics:

Ergodic Hypothesis

Ensemble averages can be computed from time averages in the microcanonical
ensemble because in the limit of large time a typical classical system traverses all of
phase space in such a way that the time spent in a given phase region is determined by
the volume of that region.
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Most Classical Systems are Not Integrable
The Ergodicity Problem

Definition

Consider a dynamical system (Ω, µ, ϕt) where ft : Ω → Ω describes the (Hamiltonian)
flow of the system. The system is ergodic iff for all non-null measurable sets E ⊆ Ω
and µ-almost all ω ∈ Ω there is a t ∈ R such that ϕt(ω) ∈ E .

Remark

The above definition essentially states that in an ergodic system you always travel to
every region of phase space under the natural phase flow.
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Most Classical Systems are Not Integrable
The Ergodicity Problem

Theorem (Ergodic Theorem)

Define the phase and time averages of a function f as

E(f ) :=
1

µ(Ω)

∫
Ω
dµ(ω)f (ω) f̄ (ω0) := lim

T→∞

1

T

∫ T

0
dtf (ϕt(ω0)) (20)

respectively. Then the following statements are equivalent:

1 For µ-almost all initial conditions ω0 ∈ Ω and any integrable phase function f , the
phase average is equal to the time average:

E(f ) = f̄ (ω0) (21)

2 (Ω, µ, ϕt) is ergodic.
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Most Classical Systems are Not Integrable
The Ergodicity Problem

Corollary

The microcanonical ensemble is the unique distribution on a constant energy surface in
the canonical phase space R2n that is invariant under the natural Hamiltonian flow and
absolutely continuous with respect to the Lebesgue measure.
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Most Classical Systems are Not Integrable
The Ergodicity Problem

Integrable Systems are Not Ergodic!

Integrable systems—confined to an n-dimensional invariant torus in a
2n-dimensional phase space—are obviously not ergodic since they cannot traverse
the remaining (n − 1)-dimensions of the constant energy surface.

The KAM theorem suggests that approximate ergodicity cannot be restored for
integrable systems through the fact that we do not have an exact knowledge of
the microscopic dynamics.

Some Caveats

These facts are often seen as defects with the ergodic foundations of statistical
mechanics rather than the as arguments for the rarity of integrable systems.

Proving that dynamical systems are ergodic is typically very hard and has not
been achieved for even the simplest nontrivial examples in statistical mechanics.
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Most Classical Systems are Not Integrable
Obstructions to Integrability

Nontrivial topology of configuration space.

Splitting of asymptotic manifolds.

Branching of solutions after analytic continuation.

‘Quasi-random’ oscillations.

...

Remark

The first obstruction is kinematic. The remaining obstructions are dynamical
obstructions relating to resonance phenomena that destroy invariant tori.

C.f. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics.
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Most Classical Systems are Not Integrable
Obstructions to Integrability

Theorem

Consider a Hamiltonian system with two bounded degrees of freedom, described by the
compact space M. If χ(M) < 0, every analytic first integral on phase space T ∗M
depends on the energy.

Lemma

Let ΣE ⊆ T ∗M be the constant energy surface for a Hamiltonian H = T + V such
that

E < sup
q∈M

V (q). (20)

Then every analytic integral of the motion is a constant function on ΣE .
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Most Classical Systems are Not Integrable
“Proof” of the Lemma

By the Jacobi-Maupertius principle, the trajectories of the mechanical system with
E > V in M are geodesics with respect to the Jacobi metric

ds2J = 2(E − V )ds2 T =
1

2

(
ds

dt

)2

. (21)

By the Gauss-Bonnet formula

χ(M) =
1

2π

∫
M

d volM(q)R(q) (22)

where R(q) is the Ricci scalar of the Jacobi metric.

If χ(M) < 0 then the system is “hyperbolic on average”.

If M is hyperbolic then the phase flow is described by Anosov diffeomorphisms.

Such an Anosov system is ergodic on ΣE .
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A Conflict?

We have asserted that most classical systems are not integrable on the grounds of
resonances that spoil integrability.

On the other hand we have seen that such resonances are sufficiently rare that
integrability is typically preserved under perturbations due to the KAM theorem.

The modern picture is that the rare resonances nonetheless give rise to complex
trajectories in phase space with apparently irregular effectively stochastic motions.

These motions are not negligible because they are dense in phase space and occur
with nonzero (if small) probability under perturbation.

Actual motion in phase space given the presence of random perturbations is thus
complex mixture of regular motion on invariant tori and essentially stochastic
ergodic trajectories.
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Quantum Integrability

Definition

A quantum integrable system for a quantum system with n-degrees of freedom is a
family of n independent operators that are functions of the positions and momenta and
which mutually commute.

Remark

More generally a quantum integrable system is a ‘maximal’ commutative subalgebra of
a von Neumann algebra where the notion of ‘maximal’ depends on the context.

30 / 130



Deformation Quantisation
Algebra of Formal Power Series

Definition

Let A be an algebra. A[[x ]] is then the algebra of formal power series α :=
∑

n∈N αnx
n

where αn ∈ A for all n ∈ N. Addition and scalar multiplication ared defined
elementwise and a product is given by

αβ =
∑
n∈N

∑
k≤n

αkβn−k

 xn. (23)

Remark

We have a natural imbedding

A ⊆ A[[x ]] α 7→ α+ 0x + 0x2 + · · · . (24)
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Deformation Quantisation
Definition

Definition

Let (A, {·, ·}) be a Poisson algebra, i.e. a Lie algebra such that the Lie bracket satisfies
the following Leibnitz product law:

{f , gh} = {f , g}h + g{f , h}. (25)

A deformation quantisation of (A, {·, ·}) is an associative unital product ⋆ on A[[ℏ]]
such that

α ⋆ β = αβ +O(ℏ) (26)

and
[α, β] := α ⋆ β − β ⋆ α = iℏ{α, β}+O(ℏ2). (27)
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Deformation Quantisation
Quantum Integrable Systems via Deformation Quantisation: Heuristics

Deformation quantisation defines a quantum system as a perturbative expansion
around a classical system in powers of ℏ.
Thus by the KAM theorem we expect that most deformation quantisations of a
classical integrable system will determine a quantum integrable system.

Robnik1 argues that this claim can be improved: he conjectures that all (discrete)
quantum systems are strongly nonresonant with a constant α = α(ℏ). Classical
resonances arise in the ℏ → 0 when α(ℏ) diverges.
In short: quantum fluctuations lift classical resonances.

1Marko Robnik, ‘A note on quantum integrability’, Journal of Physics A: Mathematical and
General, 19, L841–L847, 1986. doi: 10.1088/0305-4470/19/14/004.
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Deformation Quantisation
Quantum Integrable Systems via Deformation Quantisation: Rigorous Results

Definition

Let (A, {·, ·}) be a Poisson algebra and C ⊆ A an integrable system in A. We say that
C determines a quantum integrable system iff C[[ℏ]] is a commutative subalgebra of
(A[[ℏ]], ⋆), a deformation quantisation of (A, {·, ·}).

Theorem (Garay-van Straten)

Let M be a symplectic manifold (phase space) and consider the Poisson algebra
(C∞(M), {·, ·}). An integrable system C ⊆ C∞(M) determines a quantum integrable
system, i.e. there is a deformation quantisation (C∞(M)[[ℏ]], ⋆) of (C∞(M), {·, ·})
such that C[[ℏ]] is commutative.
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Quantum Inverse Scattering

Korepin, Bogoliubov and Izergin, Quantum Inverse Scattering Method and Correlation
Functions

Bethe Ansatz solvable models are not free; they generalize free models of quantum
field theory in the following sense. Many-body dynamics of free models can be reduced
to one-body dynamics. With the Bethe Ansatz, many-body dynamics can be reduced
to two-body dynamics. The many-particle scattering matrix is equal to the product of
two-particle ones. This leads to the self-consistency relation for the two-particle
scattering matrix. It is the famous Yang-Baxter equation ... which is the central
concept of exactly solvable models.
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Most Quantum Systems are Not Integrable(?)

Argument 1:

If a quantum system is in a thermal pure state it is widely expected to obey the
Eigenstate Thermalisation Hypothesis.

Quantum integrable systems often fail to obey ETH.

Argument 2:

A quantum integrable system is one in which many body dynamics is totally
determined by two-body dynamics.

In large systems we expect significant differences in the dynamics due to emergent
n-body effects: n-particle interactions (scattering amplitudes) do not factorise into
two-body interactions, multipartite entanglement...

Argument 3: commutative subalgebras of von Neumann algebras are rare (?)
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Integrable but Effectively Unsolvable Systems
Existence of Solutions to Differential Equations

Task: Prove the existence of a solution to some differential equation

Df = 0. (28)

Procedure:
1 Recast the problem as an optimisation problem: f solves 28 iff it solves

f = inf
g∈V

A(g). (29)

E.g. equation 28 is an Euler-Lagrange equation for some action A.
2 Show that we can compute the infimum for acompact feasible set V .
3 Show that A is (lower semi)continuous.
4 Apply the following fact:

Fact

Every lower semicontinuous on a compact space attains its minimum.
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Integrable but Effectively Unsolvable Systems
Existence of Solutions to Differential Equations

The procedure sketched previously is completely nonconstructive.

This follows since it relies on a general fact that has nothing to do with the
problem in question.

Even worse this general fact relies on a notion—compactness—whose utility
depends on the existence of different equivalent formulations.

One of those formulations makes the existence of a minimiser obvious (in fact is
essentially equivalent to the existence of a minimiser).

The standard formulation of compactness, however, does not make this
minimisation statement apparent, but may be used to show more flexibly that the
feasible set is compact.

The equivalence of these distinct formulations relies on (some variant of?) the
axiom of choice, i.e. the utility of this general theorem is fundamentally
nonconstructive.
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Finding action-angle variables in general involves finding the inverse of a nonlinear
equation.

Such functions may be very hard to compute even if we know that a solution
exists.
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)

i.e.
g3(x) = x − cos(x − cos(x − cos(x))).
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Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)

Taking the limit of the recusion gives:

g(x) = lim
n∈N

gn(x) = lim
n∈N

(x − cos(gn−1(x))) = x − cos(g(x)). (32)
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)

Taking the limit of the recusion gives:

g(x) = lim
n∈N

gn(x) = lim
n∈N

(x − cos(gn−1(x))) = x − cos(g(x)). (32)

Thus rearranging we have

x = g(x) + cos(g(x)) = f (g(x)).
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)

Taking the limit of the recusion gives:

g(x) = lim
n∈N

gn(x) = lim
n∈N

(x − cos(gn−1(x))) = x − cos(g(x)). (32)

Similarly, g(f (x)) = f (x)− cos(g(f (x))) i.e.

f (x) = f (g(f (x))).
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)

Taking the limit of the recusion gives:

g(x) = lim
n∈N

gn(x) = lim
n∈N

(x − cos(gn−1(x))) = x − cos(g(x)). (32)

f ′(x) = 1− sin(x) i.e. f ′(x) > 0 on the domain. By the implicit function theorem
f is thus injective and so f (x) = f (g(f (x))) implies that g(f (x)) = x .
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions

Example

Find the inverse to the function

f (x) = x + cos x x ∈
[
0,
π

2

)
. (30)

Proof:

Define

g0(x) = x gn+1(x) = x − cos(gn(x)) g(x) = lim
n∈N

gn(x). (31)

It only remains to prove that g(x) exists. Exercise!
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions: Some Computability Results

Definition

An injective computable function f : N → N is computably invertible iff there is a
computable partial function g : N → N such that

g(x) =

{
y , x = f (y)
⊥, x /∈ f (N (32)

Fact

If f is computably invertible then the range of f is computable i.e. there is a finite
time algorithm that correctly identifies the elements of the set.
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions: Some Computability Results

Proof.

The function

h(x) =

{
1, g(x) ̸=⊥
0, g(x) =⊥

identifies the range of f and is computable if g is computable.
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions: Some Computability Results

Definition

An injective computable function f : N → N is computably invertible iff there is a
computable partial function g : N → N such that

g(x) =

{
y , x = f (y)
⊥, x /∈ f (N (32)

Fact

If f is computably invertible then the range of f is computable i.e. there is a finite
time algorithm that correctly identifies the elements of the set.

Counterexample

There exist injective computable functions with noncomputable ranges.
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions: More Computability Results

Definition

A partial function f : N → N is called one way iff it is

1 Injective.

2 Honest: there is a polynomial p such that for each y ∈ cod(f ) there is an
x ∈ f −1(y) such that |x | ≤ p(|y |).

3 Can be computed by a deterministic polynomial time algorithm.

4 f −1 cannot be computed with a deterministic polynomial time algorithm.
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Integrable but Effectively Unsolvable Systems
Inverting Nonlinear Functions: More Computability Results

Definition

The complexity class UP consists of decision problems that admit an unambiguous
non-deterministic polynomial time algorithm. In particular a decision problem belongs
to UP iff it can be solved in polynomial time on a non-deterministic Turing with at
most one accepting path for each input.

Fact

P ⊆ UP ⊆ NP.

P
?
= UP remains an important open problem.

P ̸= UP implies P ̸= NP.

A one-way function exists iff P ̸= UP (Grollman-Selman-Ko).
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Integrable but Effectively Unsolvable Systems
The Solution Converges too Slowly

Florin Diacu, ‘The Solution to the N-Body Problem’, Mathematical Intelligencer, 18,
66-70, 1996.

In 1991, a Chinese student, Quidong (Don) Wang, published a beautiful paper in
which he provided a convergent power series solution to the n-body problem. ... But
did this mean the end of the n-body problem? Though he provided a solution as
defined in sophomore textbooks, does this imply we know everything about gravitating
bodies, about the motion of stars and planets in the universe? Paradoxically, we do
not, in fact we know nothing more than before having the solution. ... [T]hese series
solutions, though convergent on the whole real axis, are practically useless because of
their very slow rate of convergence. In applications, one would have to sum up millions
of terms to determine the motion of particles for insignificantly short intervals of time.
This unusual situation ... clarifies that even a constructive solution can be useless from
a practical point of view.
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Reductively Fundamental Theories Might Be Integrable

String theory is perhaps the TOE and it is integrable.

Every UV/IR fixed point of a renormalisation group flow is a conformal field
theory—these are integrable (in a slightly wider sense than the above integrable
systems) due to the structure of the conformal bootstrap: all information is
reduced to the nature of the three-point structure constants.

Most physical systems of interest are not reductively fundamental; instead they
concern relatively isolated phenomena at certain characteristic (energy) scales.

In particular a good physical system is concerned with phenomena that decouple
from physical effects occurring at distinct scales.
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The Nature of Physical Decoupling

The precise meaning of the decoupling of physical effects at different scales is
relatively subtle.

In particular it does not mean that physics at one scale is independent of physics
at another scale.

44 / 130



The Nature of Physical Decoupling
Examples of Systems Coupled at All Scales
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Fractals
https://commons.wikimedia.

org/wiki/File:

Mandelbrot20210909_ABC02_

65535x65535.png

Turbulence, depicted in Da Vinci’s
A Deluge
RL 12378

https://www.rct.uk/collection/

912378/a-deluge

Statistical models at
criticality

https://commons.

wikimedia.org/wiki/File:

Ising_Criticality2.gif

https://commons.wikimedia.org/wiki/File:Mandelbrot20210909_ABC02_65535x65535.png
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The Nature of Physical Decoupling
Quantum Theory Incorporates Contributions at All Scales

Compute the overlap of two quantum states |ψ⟩ and |χ⟩.
Expand each in an energy eigenbasis { | en⟩ }:

|ψ⟩ =
∑
n

ψn |en⟩ |χ⟩ =
∑
n

χn |en⟩ . (33)

Then
⟨ψ|ϕ⟩ =

∑
n

ψ∗
nϕn. (34)

The sum over n is a sum over all the distinct energy levels of the system:

Quantum phenomena generically have characteristic contributions at all scales.
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The Nature of Physical Decoupling
Quantum Theory Incorporates Contributions at All Scales

The partition function for a quantum particle of mass m moving on the line is
given

Z[J] =

∫
Γ
Dγ exp

(
i

2
m

∫
γ
t.γ̇

2(t)

)
(33)

where Γ is a suitable space of paths.

Thus trajectories of all possible values of the action (and thus energy) contribute
to the quantum partition function.

Expectations can be computed via functional derivatives of the partition function.

Thus quantum expectations incorporate contributions from possible trajectories at
all scales.
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The Nature of Physical Decoupling
Some Field Theory Comments

The above arguments suggest that quantum fluctuations generically appear at all
energy scales.

Further evidence of this is the appearance of conformal (Weyl) anomalies:
quantum fluctuations typically break classical scale invariance.

Naturalness problems (hierarchy problem, cosmological constant problem) concern
the sensitivity of measurable quantities to phenomena at very distinct scales.
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The Nature of Physical Decoupling
Effective Field Theory and the Renormalisation Group

The effect of quantum fluctuations at energy scales much higher than at present
concern can be integrated out.

If an interaction that takes place at a higher energy scale is not characteristic of
the present energy scale then it disappears from the effective action describing the
theory at the current energy scale.

However it leaves a residue of its presence by shifting the value of the coupling
constants of the theory.

The renormalisation group encodes how the coupling constants of a theory flow in
parameter space.

Since quantum fluctuations generically induce all possible interactions, the
parameter space is an infinite dimensional space of all possible couplings.

The flow in this infinite dimensional space can thus be encoded in a Wilsonian
effective field theory including all possible interaction terms.
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The Nature of Physical Decoupling
Decoupling

Applequist and Carrazone introduced a decoupling theorem which precisely
characterises the way low-energy physics ‘decouples’ from high-energy physics.

Assume we have a light scalar φ and a heavy scalar Φ of masses m and M
respectively interacting via the term

λϕ2Φ2. (34)

Let ΣΛ denote the 1-loop scalar two-point function with cutoff energy Λ i.e.

ΣΛ = m2(Λ) + λ(Λ)

∫
|k|<Λ

d4k

(2π)4
1

k2 +M2(Λ)
. (35)

Since this is a physical quantity it should not depend on the cutoff:

0 = ΣΛ0 − ΣΛ (36)

where we take Λ0 ≫ M to be a high-energy cutoff scale and Λ our present energy
scale.
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The Nature of Physical Decoupling
Decoupling

Ignoring subleading terms the above implies

m2(Λ) = m2(Λ0) +
λ(Λ0)

16π2

(
(Λ0 − Λ) +M2(Λ0) ln

Λ2
0 +M2(Λ0)

Λ2 +M2(Λ)

)
+O(λ2). (34)

In the low energy limit Λ ≪ M we find

m2(Λ) ∼ M2(Λ0) ln

(
1 +

Λ2
0

M2(Λ0)

)
. (35)

Clearly the value of m2(Λ) depends on both the heavy mass M and the UV cutoff
scale Λ0.
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The Nature of Physical Decoupling
Decoupling

For Λ ≪ M we see that M2(Λ0) contributes only an additive shift to the value of
m2(Λ).

Thus for a measurement of m2(Λ) at a single value of Λ one cannot separate the
contributions from m and M at Λ0.

We thus need to study how m2(Λ) varies with Λ: we want the RG equation.

Differentiating the above gives

dm2(Λ)

d ln Λ
=
λ(Λ0)

8π2
Λ2

(
M2(Λ0)

Λ2 +M2(Λ)
− 1

)
(34)

where we assume that M varies slowly with Λ compared to m.

With this assumption we have M2(Λ0) ∼ M2(Λ) and at Λ ≪ M we find

dm2(Λ)

d ln Λ
̸= f (M). (35)
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The Nature of Physical Decoupling
Decoupling

Applequist-Carrazone Theorem

The decoupling theorem shows us that at low energies the heavy-mass scalar
decouples from the light-mass scalar in the sense that it does not contribute to
the running of the light-mass.

Thus at light masses the renormalisation group trajectory is confined to an affine
subspace of the (m,M) plane.

The actual physics (values of m and M) still depends on the UV scale through
the initial condition for the masses m etc. i.e. in the choice of affine subspace.

Since m(Λ0) and M2(Λ0) do not change as we scale Λ and since these terms
contribute additively to the value of m for small Λ we see that doubling Λ does
not lead to doubling m.

Thus being confined to a nontrivial affine subspace (rather than a linear subspace)
is associated with a quantity having an anomalous dimension.
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Summary
Kettle Logic

50 / 130

I borrow a kettle from my neighbour. My neighbour claims
the kettle is broken and asks me to buy them a new one. I
refuse because:

1 I returned the kettle undamaged.

2 The kettle was already damaged when I borrowed it.

3 I never borrowed the damn kettle anyway!

Trustees of the British Museum.
https://www.britishmuseum.org/collection/image/1205873001

https://www.britishmuseum.org/collection/image/1205873001


Summary
The Limits to Integrability

My neighbour gives me some equations of motion and asks me to solve them. I refuse
because:

1 The equations of motion do not have a solution (since the system described by
the equations of motion is not integrable).

2 They have a solution but it isn’t useful (since it is nonconstructive, too implicit or
not efficiently computable).

3 They aren’t the right equations of motion anyway!
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Part III

Regularity of Physical Relations
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Précis of the Argument

There is a mathematical distinction between analyticity and smoothness. In
particular, while all analytic functions are smooth, typical smooth functions are
not analytic.

We do not expect the functional relations of physics to be described by analytic
functions unless there is a good external explanation for analyticity.

Smooth functions are characterised by approximate polynomiality.

Polynomials in turn are characterised by the fact they characterise composite
systems exhibiting (integer) power-law scaling around variable centres.

The theory of regularity structures is a general framework for studying the
expansion of singular distributions in terms of other distributions, vastly
generalising the Taylor expansion.
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Regularity of Functions
Basic Definitions

Definition

Consider a mapping f : Rn → RD .

f is continuous iff for every x ∈ Rn and every ε > 0 there is a δ > 0 such that

||f (x)− f (y)|| < ε

for all y ∈ Rn such that ||x − y || < δ.

f is differentiable iff there is a linear map Λ : Rn → RD such that

lim
δx→0

||f (x + δx)− f (x)− Λx ||
||δx ||

= 0 (34)

f is C k iff it is k-times differentiable and the kth derivative is continuous. f is
smooth or C∞ iff it is C k for all k ∈ N.
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Regularity of Functions
Basic Definitions

Remark

Intuitively a continuous function is one that has no gaps, while a smooth
(differentiable) function is one that looks locally linear.

Every smooth function is continuous but there are many counterexamples to the
converse claim. For instance take a typical trajectory of Brownian motion.
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Regularity of Functions
Taylor’s Theorem

Theorem

Let f : R → R be C k at the point a ∈ R. Then there is a function εk : R → R such
that

lim
x→a

εk(x) = 0 (34)

and

f (x) =
k∑

n=0

1

n!
f n(a)(x − a)n + εk(x)(x − a)k . (35)

Warning

Taylor’s theorem says nothing about the convergence of the infinite Taylor series, even
for smooth functions.
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Regularity of Functions
Analytic Functions

Definition

A function f : R → R is analytic iff for each a ∈ R it can be described by a convergent
power series:

f (x) =
∑
n∈N

an(x − a)n. (36)

Corollary

For an analytic function f (x) =
∑

n∈N an(x − a)n we have

an =
1

n!
f n(a) f (x) =

∑
n∈N

1

n!
f n(a)(x − a)n. (37)

Moreover the Taylor series can be expanded around any point of the analytic domain.

56 / 130



Regularity of Functions
Analytic Functions

Lemma (Fundamental Lemma)

Suppose that a function f is analytic in some interval (a, b) and assume that its
derivatives all vanish at some point c ∈ (a, b). Then f is constant on the interval
(a, b).

Proof.

Since f is analytic we have f (x) =
∑

n
1
n! f

n(c)(x − c)n for all x ∈ (a, b). But since
f n(c) = 0 for all n > 0 we have f (x) = f 0(c) = f (c) for all x ∈ (a, b) as required.
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Regularity of Functions
Smooth but Non-Analytic Functions

Example

The function

f (x) = exp

(
− 1

x2

)
(38)

has a convergent Taylor series that is distinct from f .

Proof.

Clearly

f n(x) =
Pn(x)

x2n
exp

(
− 1

x2

)
where Pn is a polynomial. The x−2n factor leads to a possible singularity at x = 0 but
this is regulated by the exponential term. Thus f n exists and is continuous on the
entire domain and f is C∞. By the same argument we see that f n(0) = 0 and the
Taylor series vanishes identically by the fundamental lemma.
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Regularity of Functions
Analytic Continuation

Lemma

Let f , g : R → R be analytic in some interval (a, b) and suppose that f = g when
restricted to the smaller interval (c , d) where a ≤ c < d ≤ b. (Of course the case
a = c, b = d is trivial so in general we assume that equality holds for at most one of
these identities holds.) Then f = g on (a, b).

Proof.

Since f = g on (c , d), f n(α) = gn(α) for each α ∈ (c, d). But then (f − g)n(α) = 0
for all n and (f − g) is constant on (a, b) by the fundamental lemma. Since
(f − g)(α = 0 we thus have f = g on (a, b) as required.
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Regularity of Functions
Domain of Analytic Functions

Theorem

Let f be analytic and nonzero in some interval (a, b). Then the support of f must
contain (a, b). (Recall that the support of a function f is the closure of the set of
points for which f (x) ̸= 0.) In particular there is no analytic function of compact
support.

Proof.

Let f be an analytic function and let K denote the support of f . Since f is nonzero on
(a, b), K ∩ (a, b) ̸= ∅.Then since K is closed, K c := R\K is open and either
(a, b) ⊆ K or K c ∩ (a, b) is nonvoid and contains some interval (c , d) ⊂ (a, b). But in
the latter case, f = 0 on (c, d) and so f = 0 on (a, b) by analytic continuation.
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Regularity of Functions
Domain of Analytic Functions

Theorem

Let f be analytic and nonzero in some interval (a, b). Then the support of f must
contain (a, b). (Recall that the support of a function f is the closure of the set of
points for which f (x) ̸= 0.) In particular there is no analytic function of compact
support.

Analytic Perturbations

The above result shows that analytic functions are very rigid. Indeed there are no local
analytic perturbations: an analytic function must modify another function everywhere
in its analytic domain.
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Regularity of Functions
Smooth Function of Compact Support

Example

The following is an example of a smooth function with compact support

f (x) =

{
exp

(
− 1

1−x2

)
, x ∈ [−1, 1]

0, x ∈ (−∞,−1) ∪ (1,∞)
. (39)

Proof.

The support is obviously [−1, 1] and thus compact. Smoothness follows from similar
arguments to the previous example.
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Regularity of Functions
Smooth Function of Compact Support

Remark

By rescaling and and translating the previous example we can obtain a function which
is arbitrarily small and with arbitrarily small compact support. Indeed let φε,K denote
the result of such an operation such that

sup
x∈K

|φε,K (x)| < ε supp(φε,K ) ⊆ K . (39)

We call any such function a bump function. Bump functions can be regarded as
encoding arbitrarily small smooth but nonanalytic perturbations of ordinary functions.
More precisely, for every neighbourhood of a function f in the compact-open topology
there is a bump function φε,K such that f + φε,K also belongs to that neighbourhood.
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Regularity of Functions
Analytic Functions are Not Generic

Theorem

The analytic functions are nowhere dense in any space of functions containing the
bump functions and equipped with the compact-open topology.
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Analytic Structures in Physics

Naively, due to the ubiquity of Taylor approximations in the everyday life of a
physicist, it might be expected that most physical functions are analytic.

In fact by the Taylor theorem we only require sufficient differentiability (C 3 tends
to be sufficient in practice) and due to the lack of localisable perturbations we
may in fact prefer to dispense with analyticity assumptions.

Indeed by the lack of genericity and rigidity of analytic structure it seems
appropriate to reserve analyticity assumptions for structures encoded by
nondeformable universal structures.
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Analytic Structures in Physics
Examples of (the Use of) Analyticity in Physics

Complex geometry, especially Calabi-Yau manifolds and twistors.

KMS condition for thermal states in equilibrium statistical mechanics.

Analyticity properties of scattering amplitudes follow from universal physical
assumptions such as causality and locality.

Positivity of the energy H in quantum theory implies that the mapping
t 7→ Ut = exp(iHt) is the boundary value of an analytic (holomorphic) function.

Wick rotation involves analytic continuation to imaginary time.

...
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Analytic Structures in Physics
Examples of (the Use of) Analyticity in Physics

Note:

Analyticity tends to only appear in physics when there are good reasons for it to
appear. In the absence of such reasons it is probably safer to assume that analyticity is
absent.
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Smooth Structures in Physics

There are three primary reasons to use smooth structures in physics:

1 Most physical systems are cast in terms of differential equations. Such equations
are most naturally formulated for smooth objects.

2 The Taylor expansion applies to smooth functions and gives a quantitative and
simple method to consider perturbative corrections to a given system in
polynomial form.

3 Rigidity of wider mathematical structures employed:

Most continuous group actions are naturally interpreted as smooth since most
topological groups are in fact (differentiable) Lie groups (c.f. Hilbert’s fifth problem).
Local isometries between regions of RD equipped with length space metrics
associated to quadratic forms are automatically smooth.
..?
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Smooth Structures in Physics

The first reason is not very robust:
1 The use of differential equations in physics to express the equations of motion is

more a feature of habit and convenience that intrinsic necessity:

EoM can often be recast as optimisation problems; such problems have no need to
assume smooth structure. For instance the equations of motion are often solved by
solutions that could equivalently be characterised via some action/energy
minimisation or entropy maximisation property. The equations of motion are useful
insofar as they allow for simple tests of single instances of possible solutions without
having to consider the entire feasible set.
Differential equations also are often more amenable to study after being cast as
integral equations.
Similar to the above, solving differential equations may require the employ of weak
solutions in less regular function spaces (Besov spaces and Sobolev spaces for
instance) than the space of smooth functions. Elementary difficulties with smooth
solutions already appear in classical mechanics in connection with e.g. the
Lavrentiev phenomenon.
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Smooth Structures in Physics

The second reason is more robust if we are interested in approximating via polynomials:

Theorem (Converse to the Taylor Theorem)

Let f : R → R be a function such that for each a ∈ R there is a polynomial Pa of
degree n and a function εa : R → R satisfying

lim
x→0

εa(x)(x − a)n = 0 (40)

such that
|f (x)− Pa(x)| = εa(x)(x − a)n. (41)

Then f ∈ Cn.

Remark

Slightly stronger control over the form of the error εa allows us to derive a Taylor
theorem and converse for functions belonging to the Hölder spaces C k,α.
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Why Polynomials?

Polynomials have several nice mathematical properties:

Polynomials form an algebra: they are closed under addition, scalar multiplication
and multiplication.

Polynomials are closed under differentiation and integration.

Polynomials are closed under translation:

(x − a)n =
∑

ℓ+m=n

n!

ℓ!m!
(b − a)ℓ(x − b)m (42)

Polynomials are simple.
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Why Polynomials?

Physically polynomials realise the idea that a function is homogeneous up to
translation:

Recall that a function is homogeneous of degree α iff

f (λx) = λαf (x). (43)

The basic model of such a function is simply the monomial:

f (x) = xα. (44)

Lower order monomials may then be generated by translating the centre of
expansion.

Fact

Every polynomial has a unique decomposition as a sum of homogeneous polynomials.
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Why Polynomials?

The Polynomial Philosophy

A system described by a polynomial function may be regarded as a superposition
(composite) of homogeneous systems.

In particular, polynomials are the smallest closed class of functions that can
describe the translates of systems exhibiting power-law scaling (self-similarity)
when considered around the appropriate centre.

Approximately polynomial functions thus describe all approximately self-similar
systems.
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Polynomials as Models of Less Regular Functions
Stone-Weierstrass Theorem

Definition

A family of functions F on a set X is said to separate points iff for any distinct
x , y ∈ X there is a function f ∈ F such that f (x) ̸= f (y).

Theorem

Let X be a compact Hausdorff space and let A be a subalgebra of C(X ) such that A
contains a nonzero constant function. Then A is dense in C(X ) iff it separates points.

Remark

Since the polynomials contain the constants and separate points this shows
polynomials can be used to approximate all continuous functions on a compact space.
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Regularity Structures
Formal Structure of Polynomials

We have a vector space of formal polynomials T . This admits a grading into
subspaces Tα containing all polynomials of degree α.

Every concrete polynomial may then be regarded a model

Π : T → P(A). (43)
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Regularity Structures
Formal Structure of Polynomials

We have a vector space of formal polynomials T . This admits a grading into
subspaces Tα containing all polynomials of degree α.

Every concrete polynomial may then be regarded a model

Π : T → P(A). (43)

E.g. the abstract polynomial in two variables

p(x , y) = x2 + xy + yx + y2

can be realised as the either of the polynomials

(Π0p)(a, b) = a2 + 2ab + b2 Πα(a, b) = (a− α)2 + 2(a− α)(b − α) + (b − α)2

in R or as the matrix polynomial

(ΠMp)(A,B) = A2 + AB + BA+ B2. (44)

71 / 130



Regularity Structures
Formal Structure of Polynomials

We have a vector space of formal polynomials T . This admits a grading into
subspaces Tα containing all polynomials of degree α.

Every concrete polynomial may then be regarded a model

Π : T → P(A). (43)

Let Π denote the space of all models.

We have translations

Fx : T → T Γxy = F−1
x ◦ Fy Πx := Π ◦ Fx (45)

such that if p ∈ Tα, then Fxp is homogeneous near the point x .

The space of models Π is subject to the nonlinear constraints:

ΓxyΓyz = Γxz Πy = Πx ◦ Γxy (46)
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Regularity Structures
Formal Structure of Polynomials

Let us call (T ,Π, Γ) the polynomial regularity structure.

By the Taylor theorem and its converse, associated to this regularity structure is a
canonical class of spaces Cα that we can reconstruct from the space of models Pi.
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Regularity Structures
Definition

A general regularity structure simply generalises the structural features of the
polynomial regularity structure:

Definition

A regularity structure in RD consists of the following data:

An index set A ⊆ R.
A graded topological vector space T =

⊕
a∈A Ta.

A structure group G of linear operators g : T → T such that for each α ∈ A

(ga− a) ∈
⊕
β<α

Tβ (47)

for all a ∈ Tα.
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Regularity Structures
Definition

A general regularity structure simply generalises the structural features of the
polynomial regularity structure:

Definition

A model for a regularity structure (A,T ,G ) consists of a pair (Γ,Π) where

Γ : RD × RD → G Γ : (x , y) 7→ Γxy (48)

and Π = {Πx }x∈RD with

Πx : T → D∗(RD) (49)

continuous and linear for each x ∈ RD . Moreover we have the following constraints:

Γxx = 1G ΓxyΓyz = Γxz Πy = Πx ◦ Γxy (50)
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Regularity Structures
Comments on the Definition

Remark

The key generalisation in the above definitions is that the models Πa are no longer
interpreted as concrete polynomials centred at a ∈ RD but instead can be arbitrary
(tempered) distributions.

The Definition is Not Really a Definition

The above definition holds ‘up to technicalities’ which contain the core power of the
theory.
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Regularity Structures
Reconstruction Theorem

Theorem

Let (A,T ,G ) be a regularity structure and (Γ,Π) a model for (A,T ,G ). Let α = inf A.
For each γ ∈ R there is a space of modelled distributions Dγ consisting of functions

f : RD →
⊕
α<γ

Tα (51)

such that there is a continuous map

Rγ : Dγ → Cα (52)

satisfying the following constraint uniformly on all compact sets: the quantity

|(Rγf − Πx f (x))ϕ| (53)

is small for all test functions ϕ.
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Regularity Structures
Reconstruction Theorem

Remark

The modelled distributions Dγ generalise the smooth spaces Cα used in traditional
analysis and show that the model distributions Πx f (x), t ∈ T , can be approximated
locally by the ‘jets’ of distributions f . By appropriately choosing the regularity
structure (A,T ,G ) and the model (Γ,Π) one can thus obtain modelled distributions
Dγ tailored to the problem at hand.
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Regularity Structures
Applications

Regularity structures provide a systematic way of generalising the Taylor expansion
to study far more singular problems than allowed by the Taylor theorem.

In particular they allow for the solution to many nonlinear stochastic PDEs
because the formalism map automatically provides an algorithm for the
multiplication of a wide class of distributions.

For certain subcritical stochastic PDEs there is a systematic renormalisation
procedure for constructing the ‘correct’ regularity structure+model for the
problem under concern.

Martin Hairer developed this general framework and used it to construct the
stochastic quantisation of the ϕ43 theory and solve the KPZ (Kardar-Parisi-Zhang)
equation.

He was awarded the Fields medal in 2014 for this work.
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Regularity Structures
Why are Regularity Structures Powerful?

Martin Hairer, A Theory of Regularity Structures

We will endow the space of all models ... with a topology that enforces the correct
behaviour of Πx near each point x , and furthermore enforces some natural notion of
regularity of the map [Γ]. The important remark is that although this turns the space
of models into a complete metric space, it does not turn it into a linear (Banach)
space! It is the intrinsic nonlinearity of this space which allows to [sic] encode the
subtle cancellations that one needs to be able to keep track of in order to treat the
examples mentioned [above].
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Part IV

Divergence of Perturbation Theory
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Dyson’s Argument

Assume the QED (zero source) partition function admits an analytic series
expansion in terms of the fine-structure constant:

Z(α) =
∑
n

cnα
n. (51)

This represents a sum of vacuum diagrams; photon lines are internal so we have
an even number of vertices in each diagram: the expansion is in terms of e2 = α.

Analytically continue to negative α.

Due to the negative sign of α = e2, like charges Coulomb attract and opposite
charges repel.

The vacuum then admits an instability associated to decay into electron-positron
pairs:
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Dyson’s Argument

Consider N electrons in a region of radius r and N positrons in a similar region
with the two regions separated by a distance d ≫ r .

The energy consists of electrostatic repulsion between the two distinct regions,
electrostatic attraction internal to each region and kinetic energy coming from
linear momentum.

Since d ≫ r we ignore electrostatic repulsion and the electrostatic potential
energy is

−N2 e
2

r
. (51)

The linear momentum exhibited by the configuration is of order

p ∼ N

r
. (52)

The configuration is then viable as long as

N2 e
2

r
>

N

r
i.e. N ≳

1

α
. (53)
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Dyson’s Argument
Dyson’s Core Assumption

Structure of Dyson’s argument:

QED at α < 0 is unphysical =⇒ Perturbation theory diverges.

By contraposition we obtain

Perturbation theory converges =⇒ QED at α < 0 is physical.

Dyson’s Assumption on Perturbative Ontology

If the perturbative expansion of a model converges then the solution is physical.

Corollary

The functional relations of physics are analytic.
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Dyson’s Argument
Some Counterexamples

Example 1 [Herbst and Simon, 1978]

Consider a quantum system with the Hamiltonian:

H(g) = p2 − 1 +
1

g2
((gx + 1)2 − 1)2 − 2gx . (54)

The Rayleigh-Schrödinger series
∑

n ang
2n converges to the incorrect solution.

Proof.

The RS series is defined by an = 0. On the other hand E (g) > 0. To see this first note
that:

H(g) = A∗(g)A(g) A =
d

dx
+ x + gx2

so E (g) ≥ 0.
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Dyson’s Argument
Some Counterexamples

Example 1 [Herbst and Simon, 1978]

Consider a quantum system with the Hamiltonian:

H(g) = p2 − 1 +
1

g2
((gx + 1)2 − 1)2 − 2gx . (54)

The Rayleigh-Schrödinger series
∑

n ang
2n converges to the incorrect solution.

Proof.

By a general result E (g) = 0 iff the solution f of Af = 0 is square-integrable. Taking

f (x , g) = exp

(
−1

2
x2 − 1

3
x3 +

1

6
g−2

)
solves Af = 0 and is not L2.
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Dyson’s Argument
Some Counterexamples

Example 2 [Herbst and Simon, 1978]

Consider a quantum system with the Hamiltonian:

H(g) = p2 − 1 + x2(g2x2 + 1)2 − 3g2xx . (55)

Though the RS series converges correctly the associated eigenvectors diverge.

Proof.

The RS series is defined by an = 0. Thus the limit of the eigenvectors is simply the
eigenvector of the unperturbed problem (at g = 0). This is simply the ground state of
a harmonic oscillator, i.e. a Gaussian:

f0(x) = exp

(
−1

2
x2
)
.
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Dyson’s Argument
Some Counterexamples

Example 2 [Herbst and Simon, 1978]

Consider a quantum system with the Hamiltonian:

H(g) = p2 − 1 + x2(g2x2 + 1)2 − 3g2xx . (55)

Though the RS series converges correctly the associated eigenvectors diverge.

Proof.

To show E (g) = 0 again write

H(g) = A∗(g)A(g) A =
d

dx
+ x + gx3

so E (g) ≥ 0 as previously. Use the same general result but now observe that f is L2.

82 / 130



Dyson’s Argument
Some Counterexamples

Example 2 [Herbst and Simon, 1978]

Consider a quantum system with the Hamiltonian:

H(g) = p2 − 1 + x2(g2x2 + 1)2 − 3g2xx . (55)

Though the RS series converges correctly the associated eigenvectors diverge.

Proof.

In particular the function

f (x , g) = exp

(
−1

2
x2 − 1

4
g2x4

)
solves Af = 0 and is L2. f is the ground state of the perturbed system but f ̸= f0.
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Dyson’s Argument
Some Counterexamples

Example 3 [Simon]

Consider a quantum system with the Hamiltonian:

H(g) = p2 − (1− g)r−1. (56)

For λ ∈ (∞, 1) the eigenvalues are described by an analytic function that coincides
with the Rayleigh-Schrödinger perturbation series. However the Hamiltonian does not
admit eigenvalues for λ ≥ 1.

Remark

For λ > 1 the solutions to perturbation theory can be interpreted as antibound states,
i.e. poles on unphysical sheets of the scattering amplitude.
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Dyson’s Argument
The Problems with Dyson’s Argument Summarised

Perturbation theory can converge but fail to be physical.
1 This occurs when analyticity assumptions are violated, i.e. the functional relations

in question are smooth but not analytic.

In this case perturbation theory will converge to an incorrect answer.

2 When more than one quantity is treated perturbatively, it is important to check
the convergence properties of all quantities in question.

3 Even when analyticity assumptions are not violated, convergence of perturbation
theory may be spurious because the domain of analyticity includes unphysical
regions.
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Jaffe’s Modification of Dyson’s Argument

In axiomatic QFT the spectral condition says that the Hamiltonian of a valid QFT
has a Hamiltonian supported in the forwards light-cone of Minkowski space.

In 2D, arguments of Baym allow one to translate vacuum instability (required in
Dyson’s argument) into violation of the spectral condition.

Finally observe that perturbation theory satisfies the spectral condition to all
orders.

With this Jaffe argued that perturbation theory plausibly diverges. Clearly it
either diverges or converges to an unphysical result (that incorrectly respects the
spectral condition).

Jaffe also rigorously proved the divergence of perturbation theory for 2D axiomatic
QFTs with the following interaction term:

λ

∞∑
n=3

an : ϕn : (57)
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Classical Perturbation Theory for Stochastic Quantities Diverges

Assume we have a physical quantity f depends on some quantity x in a nonlinear
manner: f = f (x).

Moreover suppose that the relation is analytic in some finite domain:

f (x) =
∑
n

anx
n (58)

for all x ∈ D.
Finally assume that x is a stochastic quantity described by e.g. a Gaussian
random variable with standard deviation σ.
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Classical Perturbation Theory for Stochastic Quantities Diverges

By the final assumption

⟨xn⟩ =
{

0, n is odd
σ2k(2k − 1)!! n = 2k

(58)

where (2k − 1)!! = (2k − 1)(2k − 3) · · · (3)(1).
It can be shown that

(2k − 1)!! =
(2k − 1)!

2k−1(k − 1)!
(59)

i.e.
(2k − 1)!! ∼ exp (2k ln 2k − k ln 2− k ln k) = exp(k ln 2k) (60)

for large k by Stirling’s theorem.

Thus

⟨f (x)⟩PT :=
∑
n

an ⟨xn⟩ =
∑
k

a2kσ
2k(2k − 1)!! =

∑
k

a2kσ
2k exp(k ln 2k) (61)

and the perturbative expansion of ⟨f (x)⟩ diverges.
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Classical Perturbation Theory for Stochastic Quantities Diverges
Diagnosing the Problem

f is an analytic function of the random variable x and so ⟨f (x)⟩ is well-defined.
In particular

⟨f (x)⟩ ≠ ⟨f (x)⟩PT (62)

since the LHS exists and the RHS diverges.

What is the problem?
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Classical Perturbation Theory for Stochastic Quantities Diverges
Diagnosing the Problem

Naively we might hope that:〈∑
n

anx
n

〉
?
̸=
∑
n

an ⟨xn⟩ . (62)

In fact the above is fine up to technicalities (continuity assumptions etc).
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Classical Perturbation Theory for Stochastic Quantities Diverges
Diagnosing the Problem

More problematic is

⟨f (x)⟩ ?
=

〈∑
n

anx
n

〉
. (62)

For the above to hold we need the function f to be analytic in the entire support
of the measure describing the expectation ⟨·⟩.
In general the function f will only be analytic in a small region D of the support
of the law of f and so we cannot compute the expectation via the analytic series
expansion.
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Classical Perturbation Theory for Stochastic Quantities Diverges
Diagnosing the Problem

We have thus accounted for the inequality ⟨f ⟩ ≠ ⟨f ⟩PT .
We have not, however, explained the divergence of ⟨f ⟩PT .
This comes from the structure of the moments in for Gaussian random variables.

This is not a problem special to Gaussian random variables.

The challenge is to ensure that

⟨f ⟩PT =
∑
n

an ⟨xn⟩ (62)

by controlling the growth of the moments ⟨xn⟩.
If the radius of convergence of f is ≤ 1 then the moments are at least uniformly
bounded :

⟨xn⟩ ≤ K ∀n. (63)

This only happens if the law of f has support in [−1, 1].
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Summary

Classical perturbation theory diverges due to chaos (sensitivity to initial
conditions) and resonances.

Dyson’s argument from quantum field theory explains why perturbation theory
plausibly diverges.

Because perturbation theory can converge to incorrect/unphysical solutions
Dyson’s argument is not the last word on the topic.

On very general grounds we expect perturbation theory to fail to converge to the
correct solution for most nonlinear stochastic relations with limited analyticity
properties.
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Part V

Asymptotic Expansions
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Overview I

Perturbation theory gives asymptotic expansions to underlying smooth (analytic)
objects.

There are several senses in which a series is asymptotic to some underlying
function: in particular we identify as distinct the notions of asymptotic, strongly
asymptotic and Gevrey-s asymptotic.

While an ordinary asymptotic expansion is a power series that is uniquely
determined for every smooth real function, the converse does not hold: the same
series is asymptotic to multiple functions.

On the other hand, if a power series is strongly asymptotic to analytic some
smoooth function then that smooth function is unique.

Gevrey-s functions interpolate between analytic functions (for s = 1) and general
smooth functions (at large s).

Gevrey-s series are a special type of formal series satisfying a growth condition on
the coefficients.
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Overview II

If a function is Gevrey-s asymptotic to a series, then that series obeys the
Gevrey-s growth condition on its coefficients.

Functions that are Gevrey asymptotic to Gevrey series obey the remarkable
property that there is some finite truncation of the asymptotic Gevrey series that
captures the function up to an exponentially small error.

The Neishtadt theorem states that the formal solution to a perturbation of a
classical integrable system exists and solves the perturbed system up to an
exponentially small error.
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Asymptotic Expansions

Question: Why does perturbation theory work?
Answer: because perturbation theory defines an asymptotic expansion of an analytic
function.
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Asymptotic Expansions

Definition

Let f : C → C be a function. A series

Σf :=
∑
n

an(z − a)n (64)

is said to be an asymptotic expansion of f at a iff for each N ∈ N

lim
z→a

(z − a)−N

(
f (z)−

N∑
n=0

an(z − a)n

)
= 0. (65)
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Asymptotic Expansions

Problem

Prove that a smooth function has at most one asymptotic expansion.
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Asymptotic Expansions

Problem

Prove that a smooth function has at most one asymptotic expansion.

Rearranging equation 71, we see that

aN = lim
z→a

(z − a)−N

(
f (z)−

N−1∑
n=0

an(z − a)n

)
(66)

and the series can be specified from f recursively.
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Asymptotic Expansions

Problem

Prove that the Taylor expansion of every real smooth function is an asymptotic
expansion of the function.
Hint: use the uniform estimate for the remainder.
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Asymptotic Expansions

Problem

Prove that the Taylor expansion of every real smooth function is an asymptotic
expansion of the function.
Hint: use the uniform estimate for the remainder.

Noting that by the Hadamard lemma f (x)− Pn(x) = xnhn(x)/n! where Pn is the
Taylor polynomial we find that

lim
x→0

x−n(f − Pn(x)) = lim
x→0

(
xn+1M

xn(n + 1)!

)
= 0. (67)
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Asymptotic Expansions

Problem

Let f and g be functions with the asymptotic expansions Σf =
∑

n anz
n and

Σg =
∑

n bnz
n respectively.

1 Show that the functions f ± g have the asymptotic expansions
Σf±g =

∑
n(an ± bn)z

n respectively.

2 Show that the product fg has an asymptotic expansion Σfg =
∑

n cnz
n where

cn =
n∑

k=0

akbn−k . (68)
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Asymptotic Expansions

1 Simply note that

lim
z→0

z−N

(
(f ± g)(z)−

N∑
n=0

(an ± bn)z
n

)
= lim

z→0
z−N

(
f −

N∑
n=0

anz
n

)
+ lim

z→0
z−N

(
g −

N∑
n=0

bnz
n

)
= 0.
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Asymptotic Expansions

2 Since
N∑

n=0

cnz
n =

N∑
n=0

n∑
k=0

anbn−kz
n =

N∑
k=0

akz
k

N∑
n=k

bn−kz
n−k

we have

fg − Σfg = fg −
N∑

k=0

akz
k

N∑
n=k

bn−kz
n−k

= g

(
f −

∑
k=0

akz
k

)
+

N∑
k=0

akz
k

(
g −

N−k∑
n=0

bnz
n

)
.

Substituting into the asymptotic condition and applying continuity proves the
statement.
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Asymptotic Expansions

Problem

Let f be a smooth function with asymptotic expansion
∑

n anx
n. Show that f

′
has an

asymptotic expansion
∑

n(n + 1)an+1x
n.
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Asymptotic Expansions

Problem

Let f be a smooth function with asymptotic expansion
∑

n anx
n. Show that f

′
has an

asymptotic expansion
∑

n(n + 1)an+1x
n.

Since f is smooth, f
′
is also smooth and thus its Taylor series is its asymptotic

expansion. Computing terms and comparing given that an = f n(0)/n! proves the
statement.
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Asymptotic Expansions

Problem

1 Assume that Σ :=
∑

n anx
n is an asymptotic expansion of some function f (x).

Show that Σ is an asymptotic expansion of

g(x) = f (x) + α exp

(
–

1

αx2

)
(68)

for all values α > 0.

2 Find a value of α such that |f (x)− g(x)| > 104 for all x ∈ (0.1, 100).
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Asymptotic Expansions

1 Simply recall that exp(−1/x2) has 0 as its asymptotic expansion. 2 Choosing α
such that xα≫ 1 in the specified region of x ensures the exponential is approximately
1.
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Strong Asymptotic Expansions

Thus we have seen that while every smooth function has a unique asymptotic
expansion, the same series can be asymptotic for many rather different functions. To
see when a series characterises a function directly we use the following theorem:

Theorem

Carleman Let f : C → C be a function analytic in the region

D :=
{
z ∈ C : |z | < r and |arg(z)| < π

2

}
(68)

and continuous on the closure of D. Suppose there is a K ∈ (0,∞) such that

|f (z)| ≤ Kn+1n!|z |n (69)

for all n. Then f = 0.
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Strong Asymptotic Expansions

Problem

Prove that an entire function satisfying the estimate in Carleman’s theorem on some
open neighbourhood of zero is identically zero.
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Strong Asymptotic Expansions

Problem

Prove that an entire function satisfying the estimate in Carleman’s theorem on some
open neighbourhood of zero is identically zero.

Since f is analytic take f (z) =
∑

k akz
k . We show that ak = 0 and apply the

fundamental lemma. In particular by the inequality 69 we have that limz→0 |f (z)| ≤ 0
i.e. f (0) = 0 by continuity. Hence a0 = 0. Assume that a0, ..., aℓ = 0 so that

f (z) =
∞∑

k=ℓ+1

akz
k = zℓ+1

∞∑
k=0

ak+ℓ+1z
k .
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Strong Asymptotic Expansions

Problem

Prove that an entire function satisfying the estimate in Carleman’s theorem on some
open neighbourhood of zero is identically zero.

By inequality 69 for n > ℓ+ 1 we thus have∣∣∣∣∣
∞∑
k=0

ak+ℓ+1z
k

∣∣∣∣∣ ≤ Kn+1n!|z |n−ℓ−1

so by taking z → 0 we see that |aℓ+1| ≤ 0 i.e. aℓ+1 = 0 as required.
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Strong Asymptotic Expansions

Definition

Let f be a complex function. A series

Σf :=
∑
n

anz
n (70)

is said to be strongly asymptotic to f iff f is analytic in a region of the form D above
and there is an A ∈ (0,∞) such that for each N ∈ N∣∣∣∣∣f (z)−

N∑
n=0

anz
n

∣∣∣∣∣ ≤ AN+1N!|z |N+1 (71)

for all z ∈ D.
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Strong Asymptotic Expansions

Problem

Show that a strongly asymptotic expansion of f is an asymptotic expansion of f .
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Strong Asymptotic Expansions

Problem

Show that a strongly asymptotic expansion of f is an asymptotic expansion of f .

Note that the RHS of the strong asymptotic expansion inequality depends on |z |N+1 so
dividing by |z |N on both sides and taking the limit z → 0 gives 0 on the RHS.
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Strong Asymptotic Expansions

Problem

Let Σ1 =
∑

n anz
n and Σ2 =

∑
n bnz

n be strongly asymptotic to f . Then Σ1 = Σ2.
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Strong Asymptotic Expansions

Problem

Let Σ1 =
∑

n anz
n and Σ2 =

∑
n bnz

n be strongly asymptotic to f . Then Σ1 = Σ2.

Note that∣∣∣∣∣
N∑

n=0

(an − bn)z
n

∣∣∣∣∣ ≤
∣∣∣∣∣f (z)−

N∑
n=0

anz
n

∣∣∣∣∣+
∣∣∣∣∣f (z)−

N∑
n=0

bnz
n

∣∣∣∣∣ ≤ AN+1N!|z |N+1

so
∑N

n=0(an−bn)z
n is identically zero by Carleman’s theorem, i.e. an = bn for all n ≤ N

for all N. But this implies that Σ1 = Σ2.
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Strong Asymptotic Expansions

Problem

Let f and g have the same strongly asymptotic expansion Σ =
∑

n anz
n. Show that

f = g .
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Strong Asymptotic Expansions

Problem

Let f and g have the same strongly asymptotic expansion Σ =
∑

n anz
n. Show that

f = g .

Note that

|f (z)− g(z)| = |f (z)− Σ+ Σ− g(z)| ≤ |f (z)− Σ|+ |g(z)− Σ|

and so f − g satisfies the assumptions of the Carleman theorem, i.e. it is identically
zero.

104 / 130



Strong Asymptotic Expansions
A Useful Fact of Complex Analysis

Fact [Cauchy Integral Formula]

Let f = f (z) be a complex function analytic in some open subset of C containing the
closed disk of radius r centred at a:

Dr ,a := { z ∈ C : |z − a| ≤ r } . (72)

Let γ denote the closed curve bounding D with an anticlockwise orientation. Then for
every z ∈ Dr ,a := Dr ,a\γ we have

f (z) =
1

2πi

∮
γ
dz̃

f (z̃)

z̃ − z
. (73)
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Strong Asymptotic Expansions
Another Useful Fact of Complex Analysis

Problem [Cauchy Estimate]

Using the Cauchy integral formula prove that every complex analytic function f
defined in the disk Dr ,a as above satisfies

|f n(z)| ≤ n!

rn
sup

z̃∈Dr,a

|f (z̃)|. (74)
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Strong Asymptotic Expansions
Another Useful Fact of Complex Analysis

Problem [Cauchy Estimate]

Using the Cauchy integral formula prove that every complex analytic function f
defined in the disk Dr ,a as above satisfies

|f n(z)| ≤ n!

rn
sup

z̃∈Dr,a

|f (z̃)|. (74)

Differentiate under the integral sign in the Cauchy formula and substitute the
supremum for f in the integrand. Evaluate the remaining integral.
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Strong Asymptotic Expansions

Problem

1 Let f and g have the strong asymptotic expansions Σf and Σg . Show that f ± g
and fg have the natural strong asymptotic expansions.

2 Let f have a strong asymptotic expansion
∑

n anz
n. Prove that f

′
(z) has the

strong asymptotic expansion
∑

n(n + 1)an+1z
n.

Hint: Use the Cauchy estimate.
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Strong Asymptotic Expansions

1 The first statement is a trivial consequence of the subadditivity of the norm. For the
second statement use the expression for fg − Σfg deduced previously and apply the
triangle inequality to the norm:

|fg − Σfg | =

∣∣∣∣∣g
(
f −

N∑
k=0

akz
k

)
+

N∑
k=0

akz
k

(
g −

N−k∑
n=0

bnz
n

)∣∣∣∣∣
≤ |g | ·

∣∣∣∣∣f −
N∑

k=0

akz
k

∣∣∣∣∣+
N∑

k=0

|ak | · |z |k ·

∣∣∣∣∣g −
N−k∑
n=0

bnz
n

∣∣∣∣∣
≤ |g | · AN+1N!|z |N+1 +

N∑
k=0

|ak |AN−k+1
k (N − k)!|z |N+1.

Noting that |g | is bounded in the region D we can then choose constants ensuring the
desired result.
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Strong Asymptotic Expansions

2 Define g = f −
∑N

n=0 anz
n. Using the Cauchy estimate for g

′
for a circel Dr ,a ⊆ D

thus gives∣∣∣∣∣f ′ −
∑
n

(n + 1)an+1z
n

∣∣∣∣∣ ≤ 1

r
sup

z̃∈Dr,a

|g(z̃)| ≤ 1

r
sup
z̃∈D

|g(z̃)| ≤ 1

r
AN+1N!|z |N+1

as required.
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The Gevrey Classes

Definition

Let U ⊆ R be open. A mapping f : U → R is said to be Gevrey-σ iff for each compact
set K ⊆ U we have constants MK , NK ∈ (0,∞) such that

sup
x∈K

|f n(x)| ≤ MKC
n
k (n!)

σ. (75)

Remark

Immediately note that if f is Gevrey-s then it is Gevrey-t for all t > s.
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The Gevrey Classes
Gevrey-1=Analytic

Problem [Analytic Implies Gevrey-1]

Using the Cauchy estimate prove that a real function analytic on an interval is
Gevrey-1.
Hint: every real function analytic on an interval admits for each compact K strictly
contained in the interval a point x ∈ K and a unique analytic continuation to an open
disk in C centred at x containing K.
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The Gevrey Classes
Gevrey-1=Analytic

Problem [Analytic Implies Gevrey-1]

Using the Cauchy estimate prove that a real function analytic on an interval is
Gevrey-1.
Hint: every real function analytic on an interval admits for each compact K strictly
contained in the interval a point x ∈ K and a unique analytic continuation to an open
disk in C centred at x containing K.

By the hint for each compact K in the analytic interval of f we have an analytic
continuation to some disk centred about a point x ∈ K such that

|f (n)(z)| ≤ MK

(
1

r

)n

n! (76)

where MK = supz∈Dr,x
|f (z)|. Taking CK = (1/r) gives the desired result.
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The Gevrey Classes
Gevrey-1=Analytic

Problem [Gevrey-1 Implies Analytic]

Show that every Gevrey-1 function is analytic.
Hint: use the Lagrange form of the remainder in the Taylor theorem.
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The Gevrey Classes

Problem

Show that the class of Gevrey-s functions is closed under addition and multiplication.
Hint: Use the Leibniz formula

(fg)(n) =
n∑

k=0

n!

k!(n − k)!
f (k)g (n−k). (77)
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The Gevrey Classes

Problem

Show that the class of Gevrey-s functions is closed under addition and multiplication.
Hint: Use the Leibniz formula

(fg)(n) =
n∑

k=0

n!

k!(n − k)!
f (k)g (n−k). (77)

Addition is trivial. For multiplication simply note that∣∣∣(fg)(n)∣∣∣ = ∣∣∣∣∣
n∑

k=0

n!

k!(n − k)!
f (k)g (n−k)

∣∣∣∣∣ ≤
n∑

k=0

n!

k!(n − k)!
|f (k)| · |g (n−k)|

≤
n∑

k=0

n!

k!(n − k)!
M f

KC
k
f ,K (k!)

sMg
KC

n−k
g,K ((n − k)!)s ≤

(
n∑

k=0

n!

k!(n − k)!

)
C k(n!)s

(78)

where C > Cf ,K , Cg ,K .
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The Gevrey Classes

Problem

Show that the derivative of a Gevrey-s function is Gevrey-s.
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The Gevrey Classes

Fact [Cauchy-Hadamard]

The formal power series

f (z) =
∑
n

an(z − a)n (79)

has a radius of convergence R where

1

R
= lim sup

n→∞

(
|an|

1
n

)
:= lim

n→∞
sup
m≥n

(
|am|

1
m

)
(80)
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The Gevrey Classes

Problem

Using the Cauchy-Hadamard theorem show that every real Gevrey-s function with
s ∈ (0, 1) is entire i.e. analytic everywhere.
Hint: Use the fact that

n! ≥ z
(n
e

)n
. (81)
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The Gevrey Classes

Problem

Using the Cauchy-Hadamard theorem show that every real Gevrey-s function with
s ∈ (0, 1) is entire i.e. analytic everywhere.
Hint: Use the fact that

n! ≥ z
(n
e

)n
. (81)

Since every Gevrey-s function is Gevrey-1 for s < 1 we can fix a compact set K such
that

f (z) =
∑
n

1

n!
f (n)(z0)(z − z0)

n

for z0 ∈ K and

|an|
1
n =

∣∣∣∣ 1n! f (n)(z0)
∣∣∣∣ 1n ≤

(
MKC

n
K (n!)

s−1
) 1

n = CKM
1
n
K (n!)

s−1
n .
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The Gevrey Classes

Problem

Using the Cauchy-Hadamard theorem show that every real Gevrey-s function with
s ∈ (0, 1) is entire i.e. analytic everywhere.
Hint: Use the fact that

n! ≥ z
(n
e

)n
. (81)

Since n! ≥ z
(
n
e

)n
, (n!)1/n ≥ n/e and (n!)1/n → ∞ as n → ∞. Hence (n!)

s−1
n → 0 as

n → ∞ and
lim sup
n→∞

(
|an|

1
n

)
= 0

i.e. R = ∞ as required.
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Gevrey Series

Definition

A series Σ =
∑

n anx
n will be called Gevrey-s iff there are positive constants

K , A, α ∈ (0,∞) such that

|an| ≤ KAsnΓ(sn + α). (82)

Remark

Recall that Γ(n + 1) = n! indicating that the above is simply a generalisation of the
standard Gevrey inequality.
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Gevrey Series
Sectors

Definition

An open sector of C is any set

{ z ∈ C : α < arg(z) < β } (83)

for suitable numbers α and β. A closed sector is similarly defined except the
inequalities are not strict:

{ z ∈ C : α ≤ arg(z) ≤ β } . (84)

Note that we assume 0 belongs to each sector by assumption.
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Gevrey Series
Gevrey Asymptotics

Definition

Let f (z) be a complex function and let Σ :=
∑

n anz
n a formal power series. Let V be

a sector. f is Gevrey-s asymptotic to Σ iff there is a positive constant α, A > 0 and
for each closed subsector W of V there is a positive constant BW such that∣∣∣∣∣f (z)−

N−1∑
n=0

anz
n

∣∣∣∣∣ ≤ BWAsNΓ(sN + α)|z |N (85)

for all integers N > 0 for all z ∈ W . A function analytic in V that is Gevrey-s
asymptotic to some formal power series will be called As(V ).
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Gevrey Series
Gevrey Asymptotics

Problem

Show that if f is As(V ) for some open sector V then any formal series Σ that is
Gevrey-s asymptotic to f is a Gevrey-s series.
Note: we now take the sets K given in the definition of Gevrey functions to be closed
sectors.
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Gevrey Series
Cut-off Expansions

Definition

Let s = 1/k > 0 and V be an open sector. A function f has
∑

n anz
n as a cutoff

asymptotic of order s iff there are positive constants A, α > 0 and for each closed
sector W ⊂ V a positive constant CW ∈ (0,∞) such that∣∣∣∣∣∣f (x)−

∑
0≤n≤kA−1|z|−k

anz
n

∣∣∣∣∣∣ ≤ CW |z |α exp
(
− 1

A|z |k

)
(86)

for all z ∈ W .
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Gevrey Series

Problem

Show that if f is an analytic function admitting a cutoff asymptotic of order s then its
asymptotic expansion is a Gevrey-s series.
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Gevrey Series

Theorem (Ramis and Schäfke)

A function f analytic on an open sector V has a Gevrey-s asymptotic expansion iff it
has a cutoff asymptotic of order f on V .
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Part VI

Further Reading
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