Preheating: Characteristics and Constraints Pankaj Saha [pankaj@post.kek.jp[⊠]] based on 2412.17359 with Yuko Urakawa 2310.13060 and 2412.12287 with Yanou Cui and Evangelos I. Sfakianakis

iTHEMS Cosmology Forum n°3-(P)reheating the Primordial Universe 2025-03-04

- A. Effects of local features in the inflationary potential on the preheating dynamics.
- B. Fragmentation of coherent scalar and their signatures.

Introduction What is Inflation?

- Inflation is a period of exponential expansion of the universe in a state of negative pressure. i.e., $\ddot{a} > 0$,
- The 'right amount of inflation' solves the 'horizon' and 'flatness' problems and provides the initial condition for hot big bang evolution.
- The quantum fluctuations in the inflaton generates the seed for large scale structures.

Inflation and scalar field

 A period of negative pressure is easily achieved with a scalar field.

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi); \quad p = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

Equations of motion

(Einstein Field Equations in FLRW background):

Friedmann and Raychaudhuri equation

$$\begin{split} H^2 &\equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3\mathrm{M}_\mathrm{p}^2}\rho = \frac{1}{3\mathrm{M}_\mathrm{p}^2} \left[\frac{1}{2}\dot{\phi}^2 + V(\phi)\right]\\ \dot{H} + H^2 &= \left(\frac{\ddot{a}}{a}\right) = -\frac{1}{6\mathrm{M}_\mathrm{p}^2} \left[\rho + 3p\right] \end{split}$$

$$\begin{split} \Delta N_{if} &= \ln \left(\frac{a_f}{a_i} \right) \\ &= \int_{\phi_i}^{\phi_f} \frac{1}{\sqrt{2\epsilon_V}} \frac{|d\phi|}{\mathrm{M}_{\mathrm{P}}} \end{split}$$

The amount of expansion ('efolds'):

- Klein-Gordon Equation $\ddot{\phi} + 3H\dot{\phi} + V' = 0.$
- Slow-roll parameters:

$$\epsilon_V = \frac{M_p^2}{2} \left(\frac{V'}{V}\right)^2; \quad \eta_V = M_p^2 \frac{V''}{V}$$

What is the shape of inflationary potential

- Any potential satisfying the slow-roll conditions can sustain inflationary Universe.
- Simple potentials:
 - Quadratic: $\frac{1}{2}m^2\phi^2$
 - Quaratic: $\frac{1}{4}\lambda\phi^4$
- Observations can rule-out the (piece-wise) shape of the potentials.
- Potentials with plateaus on the large field ranges are preferred observationally.

Inflationary observables

- Perturbation to the scalar field: $\phi(\vec{x},t) = \phi_0(t) + \delta \phi(\vec{x},t)$
- Perturbation in the metric:

$$ds^{2} = a(\eta)^{2} \left[-(1 + 2\Psi(x, \eta))d\eta^{2} + (1 - 2\Psi(x, \eta))d\vec{x}^{2} \right].$$

- The gauge-invariant combination-the curvature perturbation $\mathcal{R} = \Psi + \frac{H}{\dot{\phi}_0} \delta \phi$
- We quantize the curvature perturbation (some suitable re-scaled quantity $v \equiv z \mathcal{R}$, with $z = M_{\rm Pl} a \sqrt{2\epsilon_1}$.)
- Similarly we quantize the (already gauge invariant) tensor perturbation h_{ij} .

Inflationary observables:

The Scalar spectrum (CMB anisotopic patterns) and the Tensor spectrum->The Gravitational waves (CMB B-mode).

$$\mathcal{P}_{\mathcal{R}} = \frac{1}{8\pi^2} \frac{1}{\epsilon} \frac{H^2}{M_{\rm Pl}^2} \bigg|_{k=aH} = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}$$
$$\mathcal{P}_t = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \bigg|_{k=aH} = A_t \left(\frac{k}{k_*}\right)^{n_t};$$

- Spectral tilt $n_s = 1 6\epsilon_V + 2\eta_V$
- Scalar-to-tensor ratio $r = \frac{\mathcal{P}_t}{\mathcal{P}_{\mathcal{R}}} = 16\epsilon_V$

At the Planck pivot scale k_*

- $A_s = (2.196 \pm 0.060) \times 10^{-9}$.
- $n_s = 0.9649 \pm 0.0042$
- ▶ $r_{0.002} < 0.056$

Inflationary observables:

The Scalar spectrum (CMB anisotopic patterns) and the Tensor spectrum->The Gravitational waves (CMB B-mode).

$$\mathcal{P}_{\mathcal{R}} = \frac{1}{8\pi^2} \frac{1}{\epsilon} \frac{H^2}{M_{\rm Pl}^2} \bigg|_{k=aH} = A_s \left(\frac{k}{k_*}\right)^{n_s}$$
$$\mathcal{P}_t = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \bigg|_{k=aH} = A_t \left(\frac{k}{k_*}\right)^{n_t};$$

- Spectral tilt $n_s = 1 6\epsilon_V + 2\eta_V$
- Scalar-to-tensor ratio $r = \frac{\mathcal{P}_t}{\mathcal{P}_{\mathcal{R}}} = 16\epsilon_V$

At the Planck pivot scale k_*

- $A_s = (2.196 \pm 0.060) \times 10^{-9}$.
- $n_s = 0.9649 \pm 0.0042$
- ▶ $r_{0.002} < 0.056$

Potentials with features: rich phenomenology

[H. V. Ragavendra, PS, L. Sriramkumar and J. Silk 2021]

Potentials with small-scale features: rich phenomenology?

Reheating after Inflation

- The colossal expansion during inflation leaves the Universe in a state of void with all of the energy in the coherently oscillating inflaton.
- The Standard Big Bang requires a radiation dominated Universe at around 10 MeV.
- The inflation decay to produce other fields and we recover the radiation dominated universe.
- The reheating stage is episodic: The non-linear preheating phase and the perturbative reheating.

Original Idea: Perturbative Reheating

- The "old" theory of reheating developed immediately after the idea of inflationary universe. (Abbott 1982, Dolgov 1982)
- Inflaton was considered as a collection of scalar particles each with a finite probability of decay.
- ► Inflaton decay to different channels depending upon the coupling $\nu \sigma \phi \chi^2$, $h \phi \bar{\psi} \psi$ (which associated tree-level decay-width that contributte to the total decay width $\Gamma_{\text{tot}} = \Gamma_{\phi \to \chi \chi} + \Gamma_{\phi \to \bar{\psi} \psi}$).
- Reheating ends when $H = \Gamma_{tot}$.
- Reheating temperature: $T_{\rm re} \simeq \sqrt{\Gamma_{\rm tot} M_{\rm Pl}} > 10$ MeV.

Preheating after Inflation

Kofman, Linde, Starobinsky 1994, 1997

- After inflation, the homogeneous inflaton field oscillates coherently.
- Decays to other field depending upon their coupling to inflaton.

$$\mathcal{L} = \underbrace{\frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi)}_{\text{Inflaton}} + \underbrace{\frac{1}{2}(\partial_{\mu}\chi)^{2} - \frac{1}{2}m_{\chi}^{2}\chi^{2}}_{\text{Scalar field}} - \underbrace{\frac{1}{2}g^{2}\phi^{2}\chi^{2}}_{\text{Interaction term}}$$
(1)

- Quantum particle production in the presence of time dependent classical background.
- The mode functions for scalar field $(a^{6/(n+2)}\chi_k = X_k)$ satisfy Hill/Mathieu equation:

$$\ddot{X}_k + \omega_k^2 X_k = 0; \tag{2}$$

$$\omega_k^2 \equiv \frac{k^2}{a^2} + g^2 \phi^2 \tag{3}$$

The Hill/Mathieu equations

$$\ddot{X}_k + \left(\kappa^2 + q\phi(t)^2\right)X_k = 0$$

shows parametric growth depending upon the parameter (κ, q) .

Parametric Resonance

- The Mathieu/Hill has the solution: $X_k \propto e^{\mu t}$, μ is the Floquet co-efficient.
- The bands show the region in the (q,κ²) space where the solution will have exponential growth.

The produced quanta grow and back-reacts: shutting down preheating.

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi} + g^2 \langle \chi^2 \rangle \phi = 0, \tag{4}$$

$$\langle \chi^2 \rangle = \frac{1}{2\pi} \int dk k^2 |\chi_k|^2.$$
⁽⁵⁾

$$\ddot{\chi}_{k} + 3H\dot{\chi}_{k} + \left(\frac{k^{2}}{a^{2}} + g^{2}\phi_{0}^{2}(t)\right)\chi_{k} = -\frac{g^{2}\phi_{0}(t)}{(2\pi)^{3}}\int d^{3}k'\chi_{\mathbf{k}-\mathbf{k}'}\delta\phi_{\mathbf{k}'} -\frac{g^{2}}{(2\pi)^{3}}\int d^{3}k'd^{3}k''\chi_{\mathbf{k}-\mathbf{k}'+\mathbf{k}''}\delta\phi_{\mathbf{k}'}\delta\phi_{\mathbf{k}''}$$
(6)

The Hartree approximation corresponds to neglecting the scattering between Fourier modes.

Preheating: Lattice Simulation

- The energy density of the universe just after inflation is in the form of homogeneous inflaton field.
- This energy starts decaying into fluctuations of the inflaton and other fields at the onset of preheating.
- The initial stage of preheating is marked by exponential growth of decay product due to resonance.
- The production of these highly inhomogeneous non-thermal products continues until back-reaction effects renders the preheating inefficient.
- The system is highly non-linear and we have to resort to numerical schemes. Also, the effects of back-reaction can be incorporated numerically.

Fragmentation of coherent scalar source GWs

- The scattering of the classical inhomogeneities from coherent scalar fragmentation lead to Gravitational waves.
- Add complementary channel to other sources (inflationary GWs, GWs from PT).

□ Observed frequency depends on the typical Hubble

 $f_{\rm peak} \propto \sqrt{H} \propto \sqrt{m_{\rm Scalar}}$

[Easther, Giblin, Jr., and Lim 2007]

Gravitational Waves in Lattice

The EoMs

$$\begin{split} \ddot{\phi} &+ 3H\dot{\phi} - \frac{1}{a^2}\nabla^2\phi + \frac{\partial V}{\partial\phi} = 0, \\ \ddot{\chi} &+ 3H\dot{\chi} - \frac{1}{a^2}\nabla^2\chi + \frac{\partial V}{\partial\chi} = 0, \\ H^2 &= \frac{1}{3M_{\rm Pl}^2} \left(V + \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}\dot{\chi}^2 + \frac{1}{2a^2}|\nabla\phi|^2 + \frac{1}{2a^2}|\nabla\chi|^2\right), \end{split}$$

□ Gravitational waves being transverse and traceless (TT) part of the metric perturbation in the synchronous gauge sourced by TT-part of the anisotropic stress of the scalar fields $(\Pi_{ij} = \sum_a \partial f_i^{(a)} \partial f_j^{(a)}])$

$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{1}{a^2}\nabla^2 h_{ij} = \frac{2}{M_{\rm Pl}^2 a^2} \Pi_{ij}^{\rm TT}$$

The observed GWs spectrum today:

□ The GW energy density is given by

$$\rho_{\rm GW}(t) = \frac{M_{\rm Pl}^2}{4} \langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \rangle_{\mathcal{V}}, \qquad (7)$$

□ The spectrum of the energy density of GWs (per logarithmic momentum interval) observable today:

$$\Omega_{\rm GW,0}h^2 = \frac{h^2}{\rho_{\rm crit}} \frac{d\rho_{\rm GW}}{d\ln k} \bigg|_{t=t_0} = \frac{h^2}{\rho_{\rm crit}} \frac{d\rho_{\rm GW}}{d\ln k} \bigg|_{t=t_e} \frac{a_e^4 \rho_e}{a_0^4 \rho_{\rm crit,0}}$$
$$= \Omega_{\rm rad,0}h^2 \Omega_{\rm GW,e} \left(\frac{a_e}{a_*}\right)^{1-3w} \left(\frac{g_*}{g_0}\right)^{-1/3}, \tag{8}$$

 \Box The observed frequency corresponding to a wave vector k is

$$f = 1.32 \times 10^{10} \frac{k}{\sqrt{M_{\rm Pl}H_e}}$$
(9)

18

Summary of preheating

A. Behavior of the EOS parameter.

A typical scalar potential around the minima can be described by a simple power-law behavior $V(\phi) \propto \phi^n$. The EOS for preheating for a system dominated by such a scalar field shows the following pattern:

- (i) At the initial stage of coherent oscillation of the scalar condensate, the effective oscillation averaged EOS is w = (n-2)/(n+2) [Mukhanov 2005].
- (ii) For scalar field models with $n \ge 3$, $w \to 1/3$ irrespective of the coupling [Lozanov 2016h,Lozanov 2017,Maity 2018].
- (iii) For quadratic models with four-legged interactions, EoS initially increases from zero, reaching a maximum of around $w \sim 0.3$, and eventually falls back to zero. If we consider a trilinear interaction, the EOS, on the contrary, jumps to a plateau value and keeps a constant value [Dufaux 2006]. However, the EOS never reaches the radiation EOS after preheating.

Evolution of EOS during preheating: Long-time simulation

20

Summary of preheating

B. Other general characteristics

- (i) Consists of three distinct phases:
 - 1. Parametric Resonance,
 - 2. Non-linear phase and back-reaction.
 - 3. Saturation.
- (ii) The final-stage is likely described by perturbative reheating.
- (iii) Source high-frequency GWs from classical inhomogeneities.

Preheating with potential features

What type of features will be helpful for us: Some observations

- 1. Preheating is really a small-scale phenomena. The amplitude reduces to 1/10 of its initial amplitude just after the first oscillation.
- 2. Preheating with potential terms higher than ϕ^2 is 'better'.
- 3. We should not change the potential before the end of inflation.
- 4. As the inflaton amplitude is decreasing, the features should be in a place such that their effect is imprinted on preheating for sufficient duration.

Preheating with potential features

• We take the base $m^2\phi^2$ potential with Gaussian steps/bumps at $\pm\phi_S$

$$V(\phi) = V_0(\phi) \left(1 + \sum_i \delta_i(\phi) \right)$$

$$V(\phi) = \frac{1}{2}m^2\phi^2\left(1 + h\exp\left(-\frac{1}{2}\frac{(\phi - \phi_S)^2}{\sigma^2}\right) + h\exp\left(-\frac{1}{2}\frac{(\phi + \phi_S)^2}{\sigma^2}\right)\right),$$
$$= \frac{1}{2}m^2\phi^2\left(1 + 2h\exp\left(-\frac{1}{2}\frac{\phi^2 + \phi_S^2}{\sigma^2}\right)\cosh\left(\frac{\phi_S}{\sigma^2}\right)\right)$$

• Emergent higher-power terms at small field values modify the preheating dynamics without altering the model prediction on CMB Scales.

Emergent higher-power terms

- There emerges higher-power terms $V(\phi) > |\phi|^2$.
- The effective mass decreases for dip terms (helping energy dilution for the inflaton component).

Self-Resonance improves the overall preheating

• Due to the emergent higher-power terms, there is self-resonance in the $\phi\text{-sector.}$

Inflaton amplitude

• Large inflaton amplitude as we decreases h make the interaction $g^2 \phi^2 \chi^2$ last longer.

Fig: Inflaton amplitude from back-ground solution (left) and full-numeric solution for h (from blue, green, black, red and cyan for h = -0.815, -0.5, 0.0, 0.4, and -0.815, respectively).

- Evolution of the EoS after inflation with $m^2\phi^2$ -inflation.
- Moving the steps closer to the minima will stabilize the EoS.
- Trilinear interaction ($\phi \chi^2$) can also stabilize the EOS.

Improved energy-transfer with features

Self-resonance after quadratic inflation

High frequency GWs

- The initial phase of the preheating will be identical to the base case, the χ sector initially drives the resonance in all cases, reflected in the initial growth of the ratio.
- The production of δφ due to rescattering from χ particles via processes such as χ_kχ_k → δφ_kδφ_k lowers this ratio.
- The rescattering of χ particles against the inflaton zero modes, $\chi_k \phi_0 \rightarrow \chi_k \delta \phi_k$, also effectively produces both $\delta \phi_k$ and χ particles, which again increases the ratio.
- This ratio starts to fall when the back reaction kicks in.
- The additional growth of $\delta\phi$ fluctuations due to self-resonance for the cases with $h \neq 0$ keeps the ratio close to one for a longer duration.

Self-resonance after quadratic inflation with features

• Preheating can happen through self-resonance even if the inflationary potential is quadratic.

How to probe these features? High frequency GWs

- The amplitude of produced GWs is substantial $\approx 10^{-10}$.
- The required strain sensitivity needed to detect a signal of fixed amplitude scales as cube of the frequency, leading to tremendous technological challenges.

How to probe these features? High frequency GWs detectors?

How to probe these features?

High frequency GWs detectors?

How to probe these features?

Contribution to the effective number of relativistic d.o.f

- The produced GWs in this phase are sub-hubble; consequently, their contribution to the energy density scales as radiation [Caprini 2018]. We assume that SGWB accounts for this additional d.o.f at the time of decoupling.
- We define the deviation of the effective number of relativistic d.o.f from the Standard Model: $\Delta N_{\rm eff} = N_{\rm eff} N_{\rm eff,SM}.$

$$\frac{h_0^2 \Omega_{\rm GW,0}}{h_0^2 \Omega_{\gamma,0}} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff},$$
(10)

- Preheating is really (very) small-scale phenomena.
- Preheating is possible solely due to these features irrespective of the shape at CMB scales or interaction to other fields *the Potential Surge Preheating*.
- Such features through their signatures in GWS, $\Delta N_{\rm eff}$, (anything else?) will help us to reconstruct the full shape of the inflaton potential.

B. Many faces of Parametric Resonance

- B.1: Resonance from ultra-light spectator scalar, all dark matter and nHz GWs signal.
- B.2: Resonance from complex spectator scalar and baryogenesis.

B1. Resonance in the spectator scalar

□ Simple renormalizable (spectator) scalars:

Model A:
$$V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{g}{2}\phi^2\chi^2$$
, (11)

Model B:
$$V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{\lambda_{\chi}}{4}\chi^4 + \frac{\sigma}{2}\phi\chi^2, \qquad (12)$$

Model C:
$$V = \frac{\lambda}{4}\phi^4$$
, (13)

Model D:
$$V = \frac{\lambda}{4}\phi^4 + \frac{g}{2}\phi^2\chi^2,$$
 (14)

Solve the system of equations including the tensor perturbations equations for GWs in a Radiation-dominated universe.

Isocurvature bound

- The fluctuations in spectators are uncorrelated with the density perturbations, leading to isocurvature perturbations.
- The spectrum for the massive and massless scalar are:

$$\mathcal{P}_S \sim \left(\frac{m_\phi}{H_I}\right)^2; \qquad \mathcal{P}_S \sim \sqrt{\lambda_\phi}.$$

- CMB data restricts the amount of isocurvature perturbations as: $\mathcal{P}_S \lesssim 0.04 \mathcal{P}_\zeta$
- Our model parameters are thus restricted to: $m_\phi \lesssim 10^{-5} H_I$ and $\lambda_\phi \lesssim 10^{-20}$.

GWs across many decades of frequency

Figure: The Produced GWs spectrum for different mass of the spectator and when the scalar component corresponds to 1% and 10% of the total energy density of the Universe. [Yanou Cui, PS, and Evangelos I. Sfakianakis Phys.Rev.Lett.133,021004(2024)]

Complementary searches

Dark matter and Dark Radiation

The relic abundance of ϕ particles:

$$\Omega_{\phi,0} \equiv \frac{\rho_{\phi},0}{\rho_{\text{tot},0}} = \frac{\frac{1}{2}m_{\phi}^2\phi_{\text{end}}^2}{3M_{\text{Pl}}^2H_0^2}\frac{g_{*,0}}{g_{*,\text{end}}}\left(\frac{T_0}{T_{\text{end}}}\right)^3$$
(15)

□ GWs contribution (amplitude $\approx 10^{-9}$) to new relativistic degrees of freedom is negligible.

$$\frac{\Omega_{\rm GW,0}h^2}{\Omega_{\gamma,0}h^2} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff} \tag{16}$$

 \square The 'massless' components can act as non-thermally produced dark radiation and will lead to additional contributions to $\Delta N_{\rm eff}$

$$\Delta N_{\text{eff}} = \frac{\hat{g}_* \hat{T}^4}{\frac{7}{4} T^4} = \frac{4}{7} \alpha \xi \hat{g}_* \left(\frac{g_*}{\hat{g}_*}\right)^{4/3} \left(\frac{\hat{g}_{*,\text{osc}}}{g_{*,\text{osc}}}\right)^{1/3}.$$
 (17)

The spectator scalar as all of dark matter and NANOGrav

Take home message: There may be a spectator scalar that accounts all the DM of the Universe and has just imprinted its signature in the NANOGrav and other PTA detectors.

B2. Parametric Resonance with a Complex Scalar and Affleck-Dine baryogenesis

• We consider a complex scalar field Φ (SM gauge singlet) with canonical kinetic terms, Einstein gravity and a simple renormalizable polynomial potential:

$$V(\Phi) = \lambda_{\Phi} |\Phi|^4 + m_{\phi}^2 |\Phi|^2 - A(\Phi^n + \Phi_*^n)$$
(18)

- For $n \ge 4$, the asymmetry is generated at high-scales (earlier), while for n = 2, the asymmetry is generated at the when the oscillation is determined by the quadratic term. The oscillation averaged asymmetry is just sufficient to satisfy the observational value. [Llyod-Stubbs & J. Macdonald 2020, ibid 2022]
- $\bullet\,$ The real and imaginary components of $\Phi,$ satisfies:

$$\ddot{\phi}_{\rm R} + 3H\dot{\phi}_{\rm R} + m_R^2\phi_R + \lambda_\phi(\phi_R^2 + \phi_I^2)\phi_R = 0,$$
(19)

$$\ddot{\phi}_{I} + 3H\dot{\phi}_{I} + m_{I}^{2}\phi_{I} + \lambda_{\Phi}(\phi_{R}^{2} + \phi_{I}^{2})\phi_{I} = 0,$$
(20)

• The field remains frozen at $\phi_{\rm in}$ and it starts rolling/oscillating when $H = H_{\rm osc} \simeq \sqrt{V_{,|\Phi|}/|\Phi|}$. The oscillation is initially dominated by Φ^4 term.

- When the amplitude drops to When the amplitude drops below $|\Phi_*| = m_{\Phi}/\sqrt{\lambda_{\Phi}}$ at t= t_* , the oscillation is dominated by quadratic terms.
- The co-moving baryon asymmetry generated during the time $t > t_*$

$$\left(\frac{a(t)}{a_{\rm in}}\right)^3 n_B(t) \simeq 4A\phi_{\rm R,in}\phi_{\rm I,in} \left(\frac{\phi_{\rm in}}{\phi_*}\right) \times \int_{t_*}^t dt' \cos\left(m_{\rm R}(t'-t_*)\right) \sin\left(m_{\rm I}(t'-t_*)\right) e^{-\Gamma_{\Phi}(t'-t_*)}, \qquad (21)$$

• Evaluating the above integral for $t\to\infty$ and factoring in the expansion during the RD Universe, we express n_B/s as

$$\frac{n_B}{s} = \begin{cases} \left(\frac{4\alpha^3}{\lambda_\Phi k_{T_d}^6}\right)^{1/4} \epsilon_\Phi \frac{m_\Phi M_{\rm Pl}}{T_d^2} \sin(2\theta); & \gamma_\Phi \gg 2\epsilon_\Phi\\ \left(\frac{\alpha^3 k_{T_d}^2}{64\lambda_\Phi}\right)^{1/4} \frac{1}{\epsilon_\Phi} \frac{T_d^2}{m_\Phi M_{\rm Pl}} \sin(2\theta); & \gamma_\Phi \ll 2\epsilon_\Phi \end{cases}$$
(22)

The maximum baryon-to-photon ratio n_B/s|_{max} = n_Φ/s (neglecting possible washout and the sphaleron factor) for three different masses of the scalar field as a function of the temperature T_d of the Φ decay.

► GW spectrum originating from the AD model for same three benchmark masses of Φ as the last figure

Outlook

- Simple models can lead to successful baryogenesis while sourcing detectable GW signals with a peak frequency of O(10-100) Hz, within reach of experiments such as ET and CE.
- The characteristic new physics scale, characterized by m_{Φ} , intriguingly lies in the range of $\mathcal{O}(0.1-10)$ GeV, while the transfer of the Φ asymmetry to the SM B- or L-asymmetry requires interactions between the new physics sector and the SM states. Hence, from this well-motivated scenario, a new, natural complementarity arises between SGWB detection and laboratory searches for new particle physics across the energy, intensity, and neutrino frontiers.
- The specifics of the complementary laboratory signal depend on the details of the asymmetry transfer mechanism.
- Many other complementary searches possible...

