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A. Effects of local features in the inflationary potential
on the preheating dynamics.

B. Fragmentation of coherent scalar and their
signatures.



Introduction
What is Inflation?
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@ |nflation is a period of exponential expansion of the universe in a state
of negative pressure. i.e., @ > 0,

@ The ‘right amount of inflation’ solves the ‘horizon’ and ‘flatness’
problems and provides the initial condition for hot big bang evolution.

@ The quantum fluctuations in the inflaton generates the seed for large
scale structures.



Inflation and scalar field

» A period of negative pressure is easily achieved
with a scalar field.
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» Equations of motion
(Einstein Field Equations in FLRW background):

» Friedmann and Raychaudhuri equation »  The amount of expansion (‘efolds’):
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> Klein-Gordon Equation
é+3HG+ V' =0.

»  Slow-roll parameters:
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What is the shape of inflationary potential

» Any potential satisfying the slow-roll conditions can sustain
inflationary Universe.
» Simple potentials:
> Quadratic: 3m?¢?

» Quaratic: i)\gb‘l
» Observations can rule-out the (piece-wise) shape of the potentials.
> Potentials with plateaus on the large field ranges are preferred
observationally.
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Inflationary observables

Perturbation to the scalar field: ¢(Z,t) = ¢o(t) + dp(Z, )
@ Perturbation in the metric:

ds* = a(n)® [ (1 + 2¥(x,n))dn* + (1 — 2¥(z,n))d7?] .

The gauge-invariant combination-the curvature perturbation
R=V+ZL5¢

%o
e We quantize the curvature perturbation (some suitable re-scaled
quantity v = zR, with z = Mpja/2¢;. )
Similarly we quantize the (already gauge invariant) tensor perturbation
hij.



Inflationary observables:

The Scalar spectrum (CMB -

anisotopic patterns) and the Tensor
spectrum=>The Gravitational waves .
(CMB B-mode). T
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Inflationary observables:

The Scalar spectrum (CMB
anisotopic patterns) and the Tensor

spectrum—>The Gravitational waves
(CMB B-mode).
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» Scalar-to-tensor ratio
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At the Planck pivot scale k,
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Potentials with features: rich phenomenology
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Potentials with small-scale features: rich phenomenology?
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Reheating after Inflation
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@ The colossal expansion during inflation leaves the Universe in a state
of void with all of the energy in the coherently oscillating inflaton.

@ The Standard Big Bang requires a radiation dominated Universe at
around 10 MeV.

@ The inflation decay to produce other fields and we recover the
radiation dominated universe.

@ The reheating stage is episodic: The non-linear preheating phase and
the perturbative reheating.
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Original Idea: Perturbative Reheating

>

| 2

>

The “old” theory of reheating developed immediately after the idea of
inflationary universe. (Abbott 1982, Dolgov 1982)

Inflaton was considered as a collection of scalar particles each with a
finite probability of decay.

Inflaton decay to different channels depending upon the coupling
vopx?, hgrh (which associated tree-level decay-width that
contributte to the total decay width I'ioy = T'g—yyy + FQHMJ).

Reheating ends when H = T'y.
Reheating temperature: Tio ~ /Ttot Mp1 > 10 MeV.
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Preheating after Inflation

Kofman, Linde, Starobinsky 1994, 1997
» After inflation, the homogeneous inflaton field oscillates coherently.
» Decays to other field depending upon their coupling to inflaton.

1 1 1 1
L=500u0) = V(®)+ 500" = 5mix* = 59°0°X°

Inflaton Scalar field Interaction term

» Quantum particle production in the presence of time dependent classical

background.
> The mode functions for scalar field(a® "2y, = X}.) satisfy Hill/Mathieu
equation:
Xk + w;%Xk =0;
k2
wi = -5+ 92¢2
a

» The Hill/Mathieu equations
Xk —+ (HZ —+ qu(t)?) X, =0

shows parametric growth depending upon the parameter (k,q).
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Parametric Resonance

> The Mathieu/Hill has the solution: Xy oc e**, i is the Floquet co-efficient.

> The bands show the region in the (q,x?) space where the solution will have
exponential growth.
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Backreaction and rescattering
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The produced quanta grow and back-reacts: shutting down preheating.
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The Hartree approximation corresponds to neglecting the scattering between Fourier

modes.
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Preheating: Lattice Simulation

O The energy density of the universe just after inflation is in the form of
homogeneous inflaton field.

O This energy starts decaying into fluctuations of the inflaton and other
fields at the onset of preheating.

O The initial stage of preheating is marked by exponential growth of
decay product due to resonance.

O The production of these highly inhomogeneous non-thermal products
continues until back-reaction effects renders the preheating inefficient.

O The system is highly non-linear and we have to resort to numerical
schemes. Also, the effects of back-reaction can be incorporated
numerically.
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Fragmentation of coherent scalar source GWs

(3 The scattering of the classical inhomogeneities from coherent scalar
fragmentation lead to Gravitational waves.

[ Add complementary channel to other sources (inflationary GWs, GWs
from PT).

(1 Observed frequency depends on the typical Hubble
fpeak X \/ﬁ X \/m

[Easther, Giblin, Jr., and Lim 2007]
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Gravitational Waves in Lattice

(1 The EoMs
ov
3H Ly 0
¢+ 3Ho V¢+a¢ :
ov
X + 3Hx 2V><+6X ;

1 1 1
H? = 1% ? Vol + = IVx[* ),
siz (V59 + 30+ 5l Ve + 52190
[ Gravitational waves being transverse and traceless (TT) part of the
metric perturbation in the synchronous gauge sourced by TT-part of
the anisotropic stress of the scalar fields (IL;; = >, 8fi(a)8f;a)])
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The observed GWs spectrum today:
[ The GW energy density is given by

2

My, (hij (%, t)hij (%, 1))y,

paw(t) = 1

[ The spectrum of the energy density of GWs (per logarithmic
momentum interval) observable today:
aépe

h? dpaw _ h? dpaw

Qaw oh? =

e " Perit dInk

1-3w ~1/3
Qe 9x

= Qrad 0h*Qaw (> (> ;
ad, ,€ a* gO

(3 The observed frequency corresponding to a wave vector k is

4
Perit d1Ink t—t, G Pcrit,0
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Mp H,
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Summary of preheating
A. Behavior of the EOS parameter.

A typical scalar potential around the minima can be described by a simple
power-law behavior V(¢) < ¢™. The EOS for preheating for a system
dominated by such a scalar field shows the following pattern:

(i) At the initial stage of coherent oscillation of the scalar condensate, the
effective oscillation averaged EOS is w = (n — 2)/(n + 2) pussasor 2005

(ii) For scalar field models with n > 3, w — 1/3 irrespective of the

coupllng [Lozanov 2016h,Lozanov 2017,Maity 2018].

(iii) For quadratic models with four-legged interactions, EoS initially
increases from zero, reaching a maximum of around w ~ 0.3, and
eventually falls back to zero. If we consider a trilinear interaction, the
EOQS, on the contrary, jumps to a plateau value and keeps a constant
value [puraux 200s). However, the EOS never reaches the radiation EOS
after preheating.
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Evolution of EOS during preheating: Long-time simulation
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Summary of preheating

B. Other general characteristics

(i) Consists of three distinct phases:
1. Parametric Resonance,
2. Non-linear phase and back-reaction.
3. Saturation.

(i) The final-stage is likely described by perturbative reheating.

(iii) Source high-frequency GWs from classical inhomogeneities.
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Preheating with potential features

What type of features will be helpful for us: Some observations

1. Preheating is really a small-scale phenomena. The amplitude reduces
to 1/10 of its initial amplitude just after the first oscillation.

2. Preheating with potential terms higher than ¢? is ‘better’.
3. We should not change the potential before the end of inflation.

4. As the inflaton amplitude is decreasing, the features should be in a
place such that their effect is imprinted on preheating for sufficient
duration.

22



Preheating with potential features
o We take the base m?¢? potential with Gaussian steps/bumps at +¢g

V(¢) = Vo(9) (1 +Z@-(¢)>

_ 2 2
V() = %m2¢2 (1 + hexp (;W) + hexp <;(¢';j5)>) 7

2 2
= %m2¢>2 <1 + 2h exp <—;¢ :2¢S> cosh <¢52 ))

o Emergent higher-power terms at small field values modify the preheating
dynamics without altering the model prediction on CMB Scales.
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Emergent higher-power terms

@ There emerges higher-power terms V(¢) > |¢[2.
@ The effective mass decreases for dip terms (helping energy dilution for
the inflaton component).
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Self-Resonance improves the overall preheating

@ Due to the emergent higher-power terms, there is self-resonance in the

¢-sector.
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Inflaton amplitude

o Large inflaton amplitude as we decreases h make the interaction
g*d?x? last longer.
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Fig: Inflaton amplitude from back-ground solution (left) and full-numeric
solution for h (from blue, green, black, red and cyan for
h = —0.815, —0.5, 0.0, 0.4, and —0.815, respectively).
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@ Evolution of the EoS after inflation with m?2®?-inflation.

@ Moving the steps closer to the minima will stabilize the EoS

o Trilinear interaction (¢x?) can also stabilize the EOS.
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Improved energy-transfer with features
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Self-resonance after quadratic inflation

High frequency GWs

The initial phase of the preheating will be
identical to the base case, the x sector
initially drives the resonance in all cases,
reflected in the initial growth of the ratio.
The production of §¢ due to rescattering
from x particles via processes such as
XkXkt — 00,00 lowers this ratio.

The rescattering of x particles against the
inflaton zero modes, X109 — XrOPk, also
effectively produces both d¢y and
particles, which again increases the ratio.
This ratio starts to fall when the back
reaction kicks in.

The additional growth of d¢ fluctuations
due to self-resonance for the cases with

h # 0 keeps the ratio close to one for a
longer duration.
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Self-resonance after quadratic inflation with features
@ Preheating can happen through self-resonance even if the inflationary
potential is quadratic.
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How to probe these features?

High frequency GWs

@ The amplitude of produced GWs

is substantial ~

@ The required strain sensitivity
needed to detect a signal of fixed
amplitude scales as cube of the
frequency, leading to tremendous
technological challenges.
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How to probe these features?
High frequency GWs detectors?
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How to probe these features?
High frequency GWs detectors?
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How to probe these features?

Contribution to the effective number of relativistic d.o.f

L 4/3
@ The produced GWs in this phase hQawo T[4 / AN
are sub-hubble; consequently, h32, 0 8\ 11 effs
their contribution to the energy (10)
density scales as radiation [caprin: 107 —
Planck
2015]. We assume that SGWB ol ]
_ 2 e oMBS4
accounts for this additional d.o.f
at the time of decoupling. R Salie midons
@ We define the deviation of the Z10f E
effective number of relativistic il ]
]
d.o.f from the Standard Model: 0. ©
ANegt = Net — Nefr, SM- Pttt tee g
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Summary

@ Preheating is really (very) small-scale phenomena.

@ Preheating is possible solely due to these features irrespective of the
shape at CMB scales or interaction to other fields — the Potential
Surge Preheating.

@ Such features through their signatures in GWS, AN.g, (anything
else?) will help us to reconstruct the full shape of the inflaton
potential.
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B. Many faces of Parametric Resonance
B.1: Resonance from ultra-light spectator scalar, all
dark matter and nHz GWs signal.
B.2: Resonance from complex spectator scalar and
baryogenesis.
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B1. Resonance in the spectator scalar

[ Simple renormalizable (spectator) scalars:
m2 g
Model A: V= 7¢¢2 + §¢2X27
m? A o
Model B: V= —2¢? + 2X\* 4 o
ode Vv 5 o+ L0t 2(;5)( ;
Model C:  V = %&,
Model D:  V = 2¢4 n %&X?,

[ Solve the system of equations including the tensor perturbations
equations for GWs in a Radiation-dominated universe.
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Isocurvature bound

@ The fluctuations in spectators are uncorrelated with the density
perturbations, leading to isocurvature perturbations.

@ The spectrum for the massive and massless scalar are:

2
PS ~ (%) N ,PS ~ \/)\Qg.
Hy

o CMB data restricts the amount of isocurvature perturbations as:
Ps < 0.04P¢

e Our model parameters are thus restricted to: m, < 107°H; and
/\¢ g 1029,
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GWs across many decades of frequency
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Figure: The Produced GWs spectrum for different mass of the spectator and when

the scalar component corresponds to 1% and 10% of the total energy density of
the Universe. [Yanou Cui, PS,and Evangelos I. Sfakianakis Phys.Rev.Lett.133,021004(2024)]
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Complementary searches
Dark matter and Dark Radiation
(3 The relic abundance of ¢ particles:

1,2 .2
_ p¢>70 . §m¢¢end 9x,0 < To )3
Tend

Qg0

= = 15
’ Ptot,0 3M1%1H§ GJx,end ( )

[ GWs contribution (amplitude ~ 107?) to new relativistic degrees of
freedom is negligible.

Qawoh? 7 [ 4\*?
Q 0h2 = g ﬁ ANeff (16)
77

(3 The ‘massless’ components can act as non-thermally produced dark
radiation and will lead to additional contributions to AN.g

g 4/3 - 1/3
Q*T4 4 A (g*) (g* osc)
ANgg = 5— = —afgy | — — . 17

¢ £T4 7 5 9% Gx,0sc ( )
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The spectator scalar as all of dark matter and NANOGrav

f peak [HZ]
1074

o 1 1 1 | |
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» Take home message: There may be a spectator scalar that accounts all the
DM of the Universe and has just imprinted its signature in the NANOGrav and
other PTA detectors.
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B2. Parametric Resonance with a Complex Scalar and
Affleck-Dine baryogenesis
@ We consider a complex scalar field & (SM gauge singlet) with canonical kinetic
terms, Einstein gravity and a simple renormalizable polynomial potential:

V(®) = Ao [D|* + m} |D]* — A(P" + T (18)

o For n > 4, the asymmetry is generated at high-scales (earlier), while for n = 2,
the asymmetry is generated at the when the oscillation is determined by the
quadratic term. The oscillation averaged asymmetry is just sufficient to satisfy
the observational value. [tiyea-scusbs & 3. Macdonaid 2020, ibia 2022]

@ The real and imaginary components of ®, satisfies:

br + 3Hby + meor + Ap(6% + ¢3)r = 0, (19)
b +3Hd, +mip; + Ao(d% + ¢3)dr =0, (20)

@ The field remains frozen at ¢, and it starts rolling/oscillating when
H = Hose ~ (/Va|/|®|. The oscillation is initially dominated by ®* term.
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@ When the amplitude drops to When the amplitude drops below
|®.| = ma/v/Ae at t= t,, the oscillation is dominated by quadratic
terms.

@ The co-moving baryon asymmetry generated during the time ¢ > ¢,
3
t .
<a( )) np (t) = 4A¢R,in¢1,in <¢ln> X
Qin O«

t
/ dt’ cos (my, (' — t.)) sin (m, (¢ —t,))e Tt (21)
t*

@ Evaluating the above integral for t — oo and factoring in the
expansion during the RD Universe, we express np/s as

1/4
4013 mq)MPl . .
ng _ <>“I’kg“d> €Pp Td2 Sln(20), Yo > 26(1) -
=\ Jang A1 (22
S 0% de 1 T; . 20 . 2
64X ea ma Mp) sin(20); e < 2ep
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T, [GeV]
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» The maximum baryon-to-photon ratio ng/s| .. = no/s (neglecting
possible washout and the sphaleron factor) for three different masses
of the scalar field as a function of the temperature T,; of the ® decay.
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Qaw,oh?

» GW spectrum originating from the AD model for
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Outlook

@ Simple models can lead to successful baryogenesis while sourcing
detectable GW signals with a peak frequency of O(10-100) Hz, within
reach of experiments such as ET and CE.

@ The characteristic new physics scale, characterized by mg, intriguingly
lies in the range of ©(0.1—10) GeV, while the transfer of the ®
asymmetry to the SM B- or L-asymmetry requires interactions
between the new physics sector and the SM states. Hence, from this
well-motivated scenario, a new, natural complementarity arises
between SGWB detection and laboratory searches for new particle
physics across the energy, intensity, and neutrino frontiers.

@ The specifics of the complementary laboratory signal depend on the
details of the asymmetry transfer mechanism.

@ Many other complementary searches possible...
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