

Reduction factor study at large isospin asymmetry using the (α,αp) reaction (NP2212-SAMURAI64R1)

Sunji Kim

Center for Exotic Nuclear Studies (CENS), Institute for Basic Science (IBS)

Feb. 10, 2025 | TOGAXSI Workshop @ RIKEN | Sunji Kim

NP2212-SAMURAI64R1

Title: Reduction factor study at large isospin asymmetry using the (a,ap) reaction

Spokesperson(s): Sunji Kim

Approved - Grade A 5.0 days 5.0 days (including 0.5 days for the BigRIPS tuning)

The resubmitted proposal is better focused on the most critical cases of O isotopes. A consistent theoretical approach is now presented, which shows a clear goal of the measurement. Mentioned are also consequences for our understanding of the phenomena using two different wave function shapes: WS vs GF and their difficulties when nuclear removal is considered in a nucleus-induced knock-out reactions. The experimental setup was modified according to the availability of new and most suitable detectors. The NP-PAC recognizes the importance of clarifying the reduction factor dependence on the isospin asymmetry and therefore grants 5 days with grade A to this proposal, and at the same time prioritizes the ¹⁴O and ²⁴O measurements as the most essential ones.

- Spokesperson: Sunji Kim
 Co-Spokesperson: Yohei Matsuda (Konan Univ.)
- > 9 days for ^{14,22,24}O proposed
 - \rightarrow 5 days approved, with priority given to ^{14,24}O

Rough plan

- LHe system construction by summer
- LHe system test in the SAMURAI area
- Beamtime request for the experiment to be conducted in the first half of 2026

Motivation

b^S Institute for Basic Science

> In a wide range of isospin asymmetry, σ_{exp}/σ_{th} (Reduction factors) of one-nucleon knockout reactions

To provide complementary spectroscopy information, we proposed one-proton removal experiment using a NEW probe, an alpha target.

Experimental Setup: SAMURAI+TOGAXSI

Equipment	Measurement	Observables
TOGAXSI	Momenta of knocked-out protons	Proton removal cross sections (Recoil alpha momenta in missing mass method)
SAMURAI (Plastics at F7,F13, BDC1,2, FDC1,2, HODF)	Momenta of beams and residues	Particle identification

Target and TOGAXSI geometry

Simulation result (using the full-array design, the number of GAGG crystals=109 applied in the simulation, while the total number is 118)

Institute for Basic Science

Target and TOGAXSI geometry

Simulation result (using the full-array design, the number of GAGG crystals=109 applied in the simulation, while the total number is 118)

The original design had a missing angular range at 30-35 deg., but by shifting the target, we have no missing angular range.

Institute for Basic Science

> Angular coverage to be measured: ~5-45° in θ in the lab frame (~7-57° in θ_{cm}) (We will focus on the proton measurement, as the alpha detection efficiency is less than 1% due to the kinematics.)

⁽G.A. Moss et al., PRC 21, 1932 (1980))

Target thickness and diameter

> At a fixed distance of 69.05 mm, the window diameter restricts the target thickness.

When an event occurs near the entrance window of the target, a produced particle can reach the TOGAXSI silicon detectors with

Window Φ30: target thickness 20 mm Window Φ40: target thickness 28 mm Window Φ50: target thickness 36 mm

Status of the liquid He target

Finished

- First design of the target system with the TOGAXSI (target thickness: 20 mm, Φ: 30 mm)
- Preparation of a test chamber and a gas handler

Next step

- Technical drawing of the target system, 3D temperature simulation
- LHe production in the test chamber
- Construction and test of the LHe target system in the SAMURAI area for a month around summer (after the TOGAXSI experiments, if the experiments are performed in the first half of 2025)

②Strasse-type: ~150 mm extension needed

Test chamber and the gas handler at Konan University

(courtesy of Yohei Matsuda)

Beams, beamtime, and triggers

Secondary beam production (LISE++, EPA
--

Primary beam	Secondary beam	Primary beam intensity (pnA)	Total intensity @F13 (pps)	E @F13 (MeV/u)
¹⁸ O	¹⁴ O	40 (scaled by 5)	3.30e+5 (¹⁴ O, 3.29e+5)	254
⁴⁰ Ar	¹⁴ O	60	2.85e+5 (¹⁴ O, 2.82e+5)	241
⁴⁰ Ar	²⁴ O	500	8.54e+3 (²⁴ O, 8.58e+2)	254

(Due to the SAMURAI detectors to be operated properly, the total secondary beam intensities were estimated less than $\sim 3X10^5$ pps.)

- > Triggers
- 1/200 downscaled beam
- Beam 🗴 HODF
- Beam (x) HODF (x) TOGAXSI

Beamtime and counts

Run	Beamtime (days)	Counts (det. eff.=0.7)	ΔR
BigRIPS tuning	0.5		
¹⁴ Ο(α,αρ)	0.4	2.44e+5	0.001
¹⁴ O empty	0.1		
²⁴ Ο(α,αp)	3.5	7.48e+3	0.007
²⁴ O empty	0.5		
Total	5.0		

(Theoretical cross sections were calculated by private communication with Yoshida-san and PRC 104, L061602(2021))

(Depending on the experiment schedule, proton beamtime may be needed for the TOGAXSI tuning and calibration.)

Summary

- We plan to perform the $^{14,24}O(\alpha, \alpha p)$ experiment using the SAMURAI+TOGAXSI setup together with a LHe target.
- A distance of 69.05 mm between the LHe target center and the TOGAXSI edge is optimal for achieving high proton detection efficiency, covering the angular coverage of ~5-45°.

Discussion

- Schedule for the LHe target system test in the SAMURAI area (after the TOGAXSI experiments)
- Availability of the target position, considering the interference with the Si detector system

Thank you for your attention!