

R&D of ToF - status in Korea

CHANG-SEONG MOON

CENTRE FOR HIGH ENERGY PHYSICS (CHEP), KYUNGPOOK NATIONAL UNIVERSITY (KNU)

EIC Asia Meeting, Dec. 12 2024

CMS - MTD Endcap Timing Layer (ETL)

UFSD-K1, UFSD-K1 wafers from FBK in Italy

UFSD-K1

- The UFSD-K1 and UFSD-K2 are the latest version of UFSD (Ultra-Fast Silicon Detectors) ordered from Korea.
- □ Fifteen number of UFSD-K1 wafers manufactured by two different wafer suppliers have been delivered to KNU.
- □ Wafer-level test of the UFSD-K1, K2 is done to measure performance.

UFSD4

177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177 4 177

WAFER # W LABEL SUB. SUPPL CARBON PGAIN DOSE AA9 **STD SUPPLIER** 0.8 - Litho - CHBL 1.00 1 2 GB1 **NEW SUPPLIER** 0.8 - Litho 1.00 3 **G82 NEW SUPPLIER** 0.8 - Litho 1.00 **GB3 NEW SUPPLIER** 4 0.8 - Litho 1.00 STD SUPPLIER 0.8 - Litho 5 AA10 0.98 GB4 **NEW SUPPLIER** 0.8 - Litho 0.98 6 7 **GB5 NEW SUPPLIER** 0.8-Litho 0.98 8 GB6 **NEW SUPPLIER** 0.8 - Litho 0.98 0.8 Spray 9 AA1 STD SUPPLIER 0.98 10 **GA17** NEW SUPPLIER 0.8 Spray 0.98 **GA18** 11 **NEW SUPPLIER** 0.8 Spray 0.98 **GA19 NEW SUPPLIER** 12 0.8 Spray 0.98 13 AA2 **STD SUPPLIER** 0.8 Spray 1.00 14 **GA20 NEW SUPPLIER** 1.00 0.8 Spray 15 GA21 **NEW SUPPLIER** 0.8 Spray 1.00 16 GA22 **NEW SUPPLIER** 0.8 Spray 1.00 17 **GB7 NEW SUPPLIER** 4'HBA **G88** NEW SUPPLIER 18

UFSD4 # 14

Wafer #	DI	Gain Layer Dose	Carbon	Diffusion
14	Deep	0.77	0.6	CL-BL

Increased the number of 16X16 arrays from 12 to 21. Finalized gain layer design to shallow type.

3

LGAD wafer post-processing procedure in Korea

CHANG-SEONG MOON (KNU)

Wafer post-processing status in Korea

- Vendors from korea completed post-processing and delivered to KNU.
 - Total 5 UFSD-K1 wafers
 - UFSD-K1 standard supplier wafers(# 1, 5, 9, 13)
 - One new supplier wafer (# 6)
 - One UFSD4 No. 14 wafer
- UBM process proceeds with electroless plating
 - Thin film metal layer (Ni/Au) stack
- Backgrinding thickness = 300 µm
- Al used for backside metalization
- Dicing done with 16x16 sensor size (21mm x 21mm)

1) UBM before & after

4) Dicing

bump-bonding / Flip-chip bonding process

• Bump/Flip-Chip Bonding is a process that creates a bump on the chip to make an electrical/mechanical connection with the chip/substrate.

Bump bonding test with 16x16 LGAD (UFSD-K1) and ETROC2

Preparation of 16x16 LGAD array sensor (UFSD-K1)

- All silicon post-processing is conducted in Korea

LGAD wafer fabricated from foundry company

Invert Waf

DI Spin Rinse Dry

÷

[Diced wafer]

Preparation of ETROC2 chip for bump bonding

- Step 1 : The ETROC2 chips (N60R80) received from CERN The surface of the chips was not so good condition.
- Step 2 : Rework (cleaning) of the ETROC2 chips for UBM and bump bonding

After plasma cleaning and solvent cleaning, the surface condition was still not uniform.

After back-grinding (~10µm)

9

Preparation of ETROC2 chip for bump bonding

Solder bumping on LGAD (USFD-K1) & bump bonding

- Solder bumping & Bump-bonding process (at Hansol Semiconductor)

Bump bonded samples with LGAD & ETROC2

- We were able to successfully obtain 10 samples.

: Four samples were mis-aligned and broken during the bumping or bump bonding process We learned a lot of know-how how to handle the thin sensors and chips from the process.

The G1, G2 samples were fabricated using ETROC2 processed by Vendor 2 (Wiz flatform) for UBM.

- 10 samples are ready to test
 - Some will undergo non-destructive analysis (3D CT)
 - Plan to do the beta ray test based on the system test setup at KNU
 - Mechanical test (Shear strength test)
 - Few of them can be shared to other groups (Boston etc.) for testing.

[Example of solder ball with 3D CT or X-ray analysis]

2D X-ray test for Bump bonded sample #1

- Non-destructive 2D X-ray analysis of bump bonded samples (#1)
 - Most of the bump bonding alignments appear to be well done. (UBM done in Wiz platform)

2D X-ray test for Bump bonded sample #2

- Non-destructive 2D X-ray analysis of bump bonded samples (#2) : Not good results
 - Many bumps were not formed in the correct positions: the reason due to the poor ETROC2 UBM

(MK Chem & Tech)

Fabrication of dummy wafer for bump bonding process yield test

Fabrication of dummy wafer for bump bonding test

I designed the dummy wafers by myself and fabricated them at the ETRI fab in Korea.

- □ To verify the yield of the bump bonding process on a large scale.
- □ The dummy wafers have different sizes for the top and bottom parts compared to the Kansas University wafers.
 - To facilitate the dicing process.
 - Therefore, we made separate photomasks for the top and bottom parts.
- □ Each wafer consists of 21 main chips and test patterns on the wafer.

6 inch wafer design by KCMS team for dummy wafer fabrication in Korea

Quality test for the fabrication of dummy wafers

- We produced five wafers each for the top and bottom parts.
 - □ All wafers were fabricated at the ETRI fab center in Korea
 - 5 Top dummy wafers for LGAD pattern

5 Bottom dummy wafers for ETROC2 pattern

Resistance measurement with bottom dummy

18

Plan for yield test of dummy wafers

Due to the Christmas and year-end holidays, we plan to complete it by mid-January 2025.

[Timetable for bump bonding tests with over the 100 samples]

Yield test with Dummy wafers		No	V.			Dec.										25. Jan.																																
Process Item	26 2	7 28	3 29	30	1	2	3	4	5	6	7	8	9 1	0	11 1	12 1	13	14 1	5 1	6 1	7 1	8 1	9 2	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12	2 13
UBM																																																
Back-grinding 675um → 300um																																																
Dicing																																																
Solder bumping																																																
Bump bonding																																																
Resistance measurement																																																

Wafer post-processing status in Korea

• Two test structures in each wafer were diced in detail.

hat Topert GRU, P Ang-res Ang-res	PCM	1x2 Type20 GR3_0
2x2 Type9 GR3_0 GR3_0	2x2 Type10 GR3_1 GR3_1	2x2 Type9 643_2
5x5 Type9 GR3_0	Sx5 Type10 GR3_0	22 Types GIS_STD 22 Types GIS_STD 22 Types GIS_STD 22 Types GIS_STD
5x5 Type10 GR3_1	5x5 Type9 GR3_1	242 Type10 GR5_1 242 Type10 GR5_3

Probe Station setup at KNU

• Overview

• wafer chuck

• sensor chuck

- There are 6 probe arms that use magnets to connect with the station
 - \rightarrow Can Compare I-V, C-V measurement results before and after UBM up to 2x2 size sensors
- Two types of chuck available for wafer-level and sensor-level tests

Sensor level test at KNU

Bias voltage apply

• Sensors can be attached to PCB board with electrically conductive double sided tape.

I-V results comparison before and after UBM : 1x1 size (PAD)

Int Type 1000,0 And Pay	PCM	1x2 Type20 GR3_0
2h2 Type9 GR3_0	2x2 Type9 GR3_1 GR3_1	2x2 Type9 GR3_2
5x5 Type9 GR3_0	5x5 Type10 GR3_0	22 27 Type 0 22 7 Type
SxS Type10 GR3_1	Sx5 Type9 GR3_1	222 Type9 GR5_1 222 Type9 GR5_1 222 Type10 GR5_1

- Current limit = 100 μA
- Bias Voltage applied up to 300 V
- Current increased after post-processing

I-V results comparison before and after UBM : 1x2 size

1x2 ype9 /x2- xx	PCM	1s2 Type20 GR3_0	Int Travel
2x2 Type9 GR3_0 91 GR3_0	2x2 Type9 GR3_1 GR3_1	2x2 Type9 6R3_2	1000 ·
5x5 Type9 GR3_0	5x5 Type10 GR3_0	2x2 Type9 GR5_STD 2x2 Type10 GR5_STD	In Tract Column
SxS Type10 GR3_1	Sx5 Type9 GR3_1	2x2 Type9 GR5_1 2x2 Type10 GR5_1	In Trans on Job of State

- Grounded other pad during measurement
- Current increased after post-processing

I-V results comparison before and after UBM : 2x2 size

1x1 Typet GR2,0 R0-19	PCM	1x2 Type20 GR3_0	Int Travel
2h21 pe9 GR5_0	2x2 Type9 GR3_1 GR3_1	2x2 Type9 GR3_2	1000 ·
5x5 Type9 GR3_0	5x5 Type10 GR3_0	2x2 Type9 GK5_STD 2x2 Type10 GK5_STD	In Trans Long, PT PAGE PAGE PAGE PAGE
Sx5 Type10 GR3_1	Sx5 Type9 GR3_1	2x2 Type9 GR5_1 2x2 Type10 GR5_1	In Trans on Lines

- Grounded other pads during measurement.
- Current increased after post-processing

C-V results comparison before and after UBM : 1x1 size (PAD)

1x2 Type# Ax2 PX	PCM	1x2 Type30 GR3_0	Int Travel
252 Type9 GR3_0	2x2 Type9 GR3_1 GR3_1	2x2 Type9 GR3_2	1000 ·
5x5 Type9 GR3_0	5x5 Type10 GR3_0	2x2 Type9 GK5_STD 2x2 Type10 GK5_STD	In Trans Long, PD, PD, PD, PD, PD, PD, PD, PD, PD, PD
5x5 Type10 GR3_1	Sx5 Type9 GR3_1	2x2 Type9 GR5_1 2x2 Type10 GR5_1	North Status

- Bias voltage applied up to 60 V \odot V_{fd} ~ 24V
- V_{fd} is consistent before and after the UBM.
- Difference capacitance below V_{fd}

C-V results comparison before and after UBM : 1x2 size

142 1949 (40,0 140 - 194 140 - 194	PCM	1s2 Type20 GR3_0	In Figure
2x2 Type9 GR3_0 GR3_0	2x2 Type9 GR3_1 GR3_1	2x2 Type9 6R3_2	
5x5 Type9 GR3_0	5x5 Type10 GR3_0	2x2 Type9 GK5_STD 2x2 Type10 GK5_STD	In tract cas, you, it is the tract of the tr
Sx5 Type10 GR3_1	Sx5 Type9 GR3_1	2x2 Type9 GR5_1 2x2 Type10 GR5_3	Intractor

- Bias voltage applied up to 60 V \bigcirc V_{fd} ~ 24V
- V_{fd} is consistent before and after the UBM.

C-V results comparison before and after UBM : 2x2 size

1x2 Typet GR2_0 R80-1W GR3_0 GR3_0	PCM	1x2 Type20 GR3_0	Ini Travel
2x2 1 pe9 GR5_0	2x2 Type9 GR3_1 GR3_1	2x2 Type9 6R3_2	1000 ·
5x5 Type9 GR3_0	5x5 Type10 GR3_0	2x2 Type9 GR5_STD 2x2 Type10 GR5_STD	Int Type 1 405, 500, 41 Nat. 1 Nat. 1 Nat.
SxS Type10 GR3_1	Sx5 Type9 GR3_1	2x2 Type9 GR5_1 2x3 Type10 GR5_1	The statut

- Bias voltage applied up to 60 V
 V_{fd} ~ 24V
- V_{fd} is consistent before and after the UBM.

ETL Module design overview

Module design overview

PCB + subassembly

Basic scheme of a module

Module PCB

• Printed circuit board that serves as the power and readout interface for the module

4x ETROC+LGAD subassembly

- 2x2 arrangement of bump-bonded assemblies
- $^\circ\,$ Each of a 16x16 pixel LGAD sensor and an "ETROC" readout chip

Assembling the ETL Modules

- The ETL detector will need ~8 thousand modules
- Fach module will be made of 4 LGAD sensors and ETROCs
- An automated robotic gantry will be used for precision placement at the 10 micron level
- All modules will then be assembled into disks at CERN

Wirebond and encapsulating

Apply film to baseplate, pick and place, and cure film

Module assembly test with dummy sample

- Module assembly pre-test for final product

[Module assembly concept of LGAD sensor]

#1. Die attach of Bump bonded sample

#2. Wire bonding to PCB board

#4. Base plate covering

#3. Wire passivation with glue

ETL Module Bonding

comparison

TOTAL WORKING TIME = 16sec / 1Chip

TOTAL WORKING TIME = 1min / 1Chip

Korean vendor – die bonder machine

Fermilab – Gantry system

ETL Module Wire Bonding

ETL Module Encapsulation

MEMSPACK

ETL Module Base Plate Bonding

반도체 PACKAGING 장비

- <u>CERN Gantry system issue</u>
- Inaccurate position of baseplate
- Unable to place automatically for current component condition
- Bumpy surface of baseplate makes lift
- Vacuum leakage issue

- 1) Clean room setup
 - ISO6 (Class 1000)
 - Size: 6500(W) x 4800(D) x 2600(H)
 - To be completed in Dec, 2024

Expectation

Design of clean room at KNU

- 2) Optical inspection & wire bonding setup
 - Digital microscope (X1600)
 - Optical microscope (X500)
 - Olympus wire bonding machine

Wire bonding machine

Digital microscope

Optical microscope

- 3) Probe station system setup (considering to order)
 - MPI TS2000-IFE, 200mm Automated probe station

Key features

- Automated Single Wafer Loader Enables convenient wafer loading with easy pre-alignment for automated routines, improving efficiency.
- Hot/Cold Wafer Swaps Unique capability to load/unload wafers at any chuck temperature, significantly reducing downtime.
- Integrated Hardware Control Panel Provides faster, safer, and more convenient system control and test
- operation.
 Temperature control (-60 to 300 °C)
- Probe card mounting

Manual Probe station system setup (6 probe arms)

• Overview

4)

• wafer chuck

• sensor chuck

- There are 6 probe arms that use magnets to connect with the station
- Two types of chuck available for wafer-level and sensor-level tests

Probe card system test setup

Meanwhile many improvements have been made on probe card system
Added few stages and fixed the probe card, usb microscopes, and vacuum chuck on the jig
Checked the feasibility of the current probe card design with this probe card jig

Probe card design

Front

Back

Readout cable connectors

Pogo pins contact

Contact between sensor and pogo pins seen by two side usb cameras

- Using two USB cameras, we adjust the tilt and the distance between the sensor and the probe card using the tilt and z stages.
- Checking good contact
 - \succ Using a multimeter to confirm the connectivity between the two outermost BBs though the probe card.
 - > If they are connected we assume the contact is good.

IV measurement results with the current system

- Measured 5 different pads by manually changing the channels
- The IV curves look reasonable and are consistent each other

Probe card - IV test

- 16x16 array
- Total current

Switching matrix development

- Tested this design concept using 2x2 LGAD sensor.
- Plan to use this design concept for a module to measure 16x16 sensors.

Switch matrix module design for 16x16 LGADs

Switching matrix test on 2x2 sensor

We checked the result with switching matrix is consistent!

IV, CV Measurements Software update

IV Measurement GUI

CV Measurement **GUI**

LGAD Measurements	?	×	C S LGAD Measurements	?	×
Switch Matrix Status Switch matrix is not ready			Switch Matrix Status Switch matrix is not ready		
IV setup CV setup			IV setup CV setup		
- IV measurement			CV measurement		
SMU V PAU	~		LCR V PAU	\sim	
Sensor Name FBK Col Number 1	~		Sensor Name FBK Col Number 1	~	
Initial Voltage (V) 0 Row Number 1	~		Initial Voltage (V) 0 Row Number 1	~	
Final Voltag (V) -250 Voltage Steps 1, (-30, -100, 2)			Final Voltag (V) -60 Voltage Steps 1, (-20, -25, 0, 1)		
Current Compliance 1e-05			AC Level 0,1 Frequency 1000		
☑ Return Sweep ☑ Live Plot			Return Sweep Live Plot		
Start Measurement			Start Measurement		
Status IV measurement selected			Status CV measurement selected		

- Used column and row number of a pad of a sensor for output file postfix
- Enable variable voltage steps according to voltage range
 - > Expect to reduce IV measurement time later.
 - \succ Will be useful to study steep curve (ex) neagebreak breakdown in IV and full depletion voltage at CV).

Current Korea CMS Activities and Future plan

Significant contributions to prototyping towards production

□ LGADs prototyping and validation

- Detailed testing of prototype LGADs informed vendor qualification
- Probe station measurements to verify quality and uniformity of full-size wafers
- Preparing the test bench setup with probe card and switching matrix
- $\circ\,$ Participating various test beam at CERN and Fermilab

System testing with LGAD+ETROC

- Will receive 12-inch ETROC2 wafers from CERN
- Active in System testing with LGAD+ETROC2, including test beam campaigns for validation of the performance of the LGADs +ETROC chain

LGAD Wafer processing

Exploring wafer processing with one of the qualified LGADs vendors for wafer thinning, dicing, and surface
preparation at Korean companies for the production phase

Bump-bonding

• Process testing with Korean vendors for LGAD-to-ETROC bump-bonding during production

Module assembly

- Korean vendor (Memspack) showed excellent performance for module assembly process with the die bonding machine.
- Plan to irradiation test for encapsulation and glue using the KOMAC test beam October and December.

