プラズマ・イオンビームの基礎と応用に関するスクール@理化学研究所



# レーザーイオン源によるリチウムビームを 利用した加速器中性子源開発の取り組み

## 高橋一匡,佐々木徹,菊池崇志

### 長岡技術科学大学

## 岡村 昌宏

### **Brookhaven National Laboratory**



2025/2/20-21

### Outline

背景

- ・大電流リチウムイオンビーム供給技術
  - ・レーザーイオン源とソレノイド磁場による

## プラズマ輸送

- ・ 直接プラズマ入射法 (DPIS)
- ・関連する最近の取り組み
- ・まとめと展望



## リチウムビームによる加速器中性子源の概略



M. Okamura, S. Ikeda, T. Kanesue, K. Takahashi, A. Cannavó, G. Ceccio, A. Cassisa, Scientifc Reports (2022) 12:14016

◎リチウムイオンをイオン源から供給しRFQとIH線形加速器で

15 MeV程度のエネルギーまで加速

◎リチウムビームを水素リッチな中性子変換ターゲットに照射

### Outline

背景

- ・大電流リチウムイオンビーム供給技術
  - ・レーザーイオン源とソレノイド磁場による

## プラズマ輸送

- ・ 直接プラズマ入射法 (DPIS)
- ・関連する最近の取り組み
- ・まとめと展望

レーザーイオン源



レーザーイオン源によるイオン供給の特性





## ソレノイド磁場によるレーザープラズマの輸送

#### **Conceptual image**



drift distance [m]

oulse width [μs]

○プラズマは自由空間で3次元的に膨張 >> j ∝ L<sup>-3</sup> ○径方向の膨張を制限できれば >> j ∝ L<sup>-1</sup>

## ソレノイド磁場によるレーザープラズマの輸送



●プラズマは自由空間で3次元的に膨張 >> j ∝ L<sup>-3</sup>
 ●径方向の膨張を制限できれば >> j ∝ L<sup>-1</sup>

## **Direct plasma injection scheme (DPIS)**



## リチウムビーム加速に用いるRFQ線形加速器





#### **Basic parameters of RFQ linear accelerator**

| Parameter          | Value     |
|--------------------|-----------|
| Structure          | 4 Rod     |
| Frequency          | 100 MHz   |
| Input energy       | 22 keV/n  |
| Output energy      | 204 keV/n |
| Input beam current | 50 mA     |
| Transmission       | 80%       |
| RFQ length         | 1977 mm   |

## リチウムビーム加速に用いるRFQ線形加速器



## リチウムビーム加速に用いるRFQ線形加速器



## リチウムビーム加速試験 実験セットアップ全体像



M. Okamura, S. Ikeda, T. Kanesue, K. Takahashi, A. Cannavó, G. Ceccio, A. Cassisa, Scientifc Reports (2022) 12:14016

## 7Li<sup>3+</sup> ビームの加速結果



### Outline

背景

- ・大電流リチウムイオンビーム供給技術
  - ・レーザーイオン源とソレノイド磁場による

## プラズマ輸送

- ・ 直接プラズマ入射法 (DPIS)
- ・関連する最近の取り組み
- ・まとめと展望

## 関連する最近の取り組み 1. 高繰り返しレーザー(≧1kHz)によるプラズマ生成検討



## 関連する最近の取り組み 1. 高繰り返しレーザー(≧1kHz)によるプラズマ生成検討

高繰り返しのレーザー照射に向けレーザーの照射に伴う 損耗を回復可能な液体ターゲットの検討



This system was tested using a low melting point alloy.

## 関連する最近の取り組み 2. RFQ加速器rod電極の刷新

### 100 mAのリチウムビームを加速可能なrod電極の開発





◎電極アパーチャサイズが可変な電極の採用により大電流化
◎セットアップが完了し実験開始

## 関連する最近の取り組み 3. リチウムビームによる中性子発生実験

### BNLのタンデム加速器を用いてリチウムビームによる中性子特性分析



Beam particle: Li-7 Beam current: 100 nA Beam energy: 14 to 56 MeV

◎中性子の分布の取得,解析中 ○ターゲットシステムの検討

*◎ <u>リチウムビームを用いた加速器中性子源</u>を提案* 

**●レーザーイオン源とDPISを用いてRFQ線形加速器で**

<u>30 mA以上のリチウムイオンビーム</u>加速に成功

### 展望

*剾高繰り返しレーザー*によるプラズマ供給 *⊌シングルショットベースで<u>100 mAのリチウムビーム</u>加速 ⊌中性子発生のための<u>ビームターゲット周り</u>の研究開発*