dN/dn updates Cheng-Wei Shih, **National Central University/RIKEN** 6 6

Jan 17th, 2025 RBRC exp. monthly meeting

Average vertex XY

unit : [cm]

final average vertex XY should be used : line filled X : -0.0216673 +/- 0.000264715 line filled Y : 0.223049 +/- 0.000601275 quadrant X : -0.021317 +/- 0.00107823 quadrant Y : 0.223549 +/- 0.000835191 avg: {-0.0214921, 0.223299} [cm] Fit avg: {-0.0216742, 0.223105} [cm]

Truth: {-0.02204, 0.2229 cm}

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

unit : [cm]

final average vertex XY should be used : line filled X : -0.0251217 +/- 0.00243517 line filled Y : 0.216403 +/- 0.00190794 quadrant X : -0.0214217 +/- 0.0071013 quadrant Y : 0.229943 +/- 0.00691613 avg: {-0.0232717, 0.223173} [cm] Fit avg: {-0.0251361, 0.216375} [cm]

Diff in two methods in Y: 134 µm

PerEvent vertex Z

INTT Vertex Z reconstruction with VtxZQA cut

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

INTT vertex Z QA (Data-MC comp)

RBRC exp. meeting

Three selections are considered for the INTT vtxZ QA. Good agreement in INTT VtxZ StdDev post selection

Vertex Z distribution, self comparison

We maybe able to do 0% - 80% ? But now stick with [0-70%]

RBRC exp. meeting

SPHE

Iracklet approach

- **Procedures:**
 - Prepare the $\Delta \phi$ distribution for each {Centrality-bin x Eta-bin x vtxZ-bin x isRotated x isTypeA}
 - Pairs are required to link to the reco. vertex Z (corresponding to $|\Delta \eta| \le 0.25$)
 - Stack up the $\Delta \phi$ histograms based on the selected vtxZ and Centrality ranges
 - Determine the background by
 - Fitting (Polynomial 2) {signal region exclusion}: Not used
 - Large-scattering tracks and the decay products of primary particles decaying in flight contribute to the fit
 - Count entries of the rotated case (Inner barrel rotated 180 degrees in ϕ)

RBRC exp. meeting

SPHE

Centrality [0-70%], vertex Z [-10 cm - 10 cm], Eta [0.3 - 0.5]

Geometry acceptance correction

- INTT vertex Z given by Uniform(-10 cm, 10 cm). Centrality region: [0-70%]. Vertex Z weight applied in MC
- Reconstruct the number of tracklets as a function of η (width 0.2) and INTT vtxZ (width 5 cm)
- Each Z bin is scaled by the un-weighted vertex Z distribution to cancel the random fluctuation
- Normalize the 2D histograms and take the ratio between data and MC
- Currently only selecting the bins with ratios within 0.9 ~ 1.1

The way how this is evaluated may be incorrect, as it can be strongly model dependent, modification is ongoing

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Geometry acceptance correction

- INTT vertex Z given by Uniform(-10 cm, 10 cm). Centrality region: [0-70%]. Vertex Z weight applied in MC
- Reconstruct the number of tracklets as a function of η (width 0.2) and INTT vtxZ (width 5 cm)
- Each Z bin is scaled by the un-weighted vertex Z distribution to cancel the random fluctuation
- Normalize the 2D histograms and take the ratio between data and MC
- Currently only selecting the bins with ratios within [0.9 ~ 1.1]

Currently, the Geometry acceptance correction is applied to MC first and then the alpha correction is derived

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

N reco. tracklets per event

The way how this is evaluated may be incorrect, as it can be strongly model dependent, modification is ongoing

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

vtxZ [-10 cm ~ 10 cm], Centrality [0-70%], vtxZ reweighing applied in MC

Alpha corrections

The ratio is [reco tracklets / Truth] Currently prefer to present in this way as it tells the reconstruction efficiency

Cheng-Wei Shih (NCU, Taiwan)

RBRC exp. meeting

SPHE

10

dN/dn

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

vtxZ [-10 cm ~ 10 cm], Centrality [0-70%], vtxZ reweighing applied in MC Eta region I ≤ 1.9 included

11

Geometry offset test v1

`Uniform(-0.025, 0.025)`, ±250 μm

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

• In the offline and in MC, introduce the random offsets in 3 dimensions for each ladder by

Run 500 trials

Geometry offset test v1 - vertex

`Uniform(-0.025, 0.025)`, ±250 μm

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

• In the offline and in MC, introduce the random offsets in 3 dimensions for each ladder by

SPHE

Geometry offset test v1 - ClusEta_INTTz

MC self-comparison, no vtxZ re-weighting

Not much variation in cluster $\boldsymbol{\eta}$

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

sphe<mark>n</mark>i

14

Geometry offset test v1 - Cluster pair

MC self-comparison, no vtxZ re-weighting

The Δφ distribution is wider once the geo. offsets are introduced, which is in line with what we seen in the data Not much variation seen in the $\Delta \eta$ distribution as supported by the cluster η distributions

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Reconstructed tracklet distribution

• Assuming what we measured is at either the lower or upper bounds, 1σ can cover the truth

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

MC self-comparison, no vtxZ re-weighting

SPHE

Systematic uncertainties

- Statistical uncertainty
- ADC cut [0, <u>35</u>]
- Δφ cut [0.018 rad, <u>0.021 rad</u>, 0.024 rad]
- Run segmentation [first 1.5M, second 1.5M, All]
- Geometry offset [Assigning offsets in 3 dimensions for each ladder] {derived purely from MC}
- Todo:
 - Need to re-consider the correction and re-run the analysis to provide you the new syst. unc.

SPHE

Currently Result (w/ Syst. unc.)

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

18

Analysis flow update

- - Confirm the column multiplicity consistency (data-MC comp.)
 - Confirm the geometry acceptance (data-MC comp.)
 - Estimate the misalignment effect in MC
- Avg VtxXY
- Per event VtxZ
- Multiplicity Ratio map -> New
- Tracklet reconstruction
- Geo Acceptance map -> New
- dNdEta (Efficiency (Alpha) correction)
 - Misalignment effect considered in the systematic uncertainty

The Geometry Acceptance Corrections in CMS approach are divided into three parts

Nultiplicity Ratio mask

- To account for the different column multiplicity (can be due to unmarked cold channel, etc) • In Data and MC, count the number of clusters for each {LadderPhilD, ColumnID, LayerID} • The count of each column is normalized by strip length and ϕ coverage

- In each ring (INTT: 26 rings), scale the the counts by the Maximal count
- Take the ratio by Data_Ring_Map / MC_Ring_Map
- Check is done ring by ring, therefore, free from vtxZ distribution and truth particle Eta distribution • The cells with 0.8 < ratio < 1.2 are used in the following analysis
- Not a correction, just mask the columns in both data and MC

MC

RBRC exp. meeting

SPHE

Nultiplicity Ratio mask

- To account for the different column multiplicity (can be due to unmarked cold channel, etc) • In Data and MC, count the number of clusters for each {LadderPhilD, ColumnID, LayerID} • The count of each column is normalized by strip length and ϕ coverage

- In each ring (INTT: 26 rings), scale the the counts by the Maximal count
- Take the ratio by Data_Ring_Map / MC_Ring_Map
 - Final Map
- Check is done ring by ring, therefore, free from vtxZ distribution and truth particle Eta distribution • The cells with 0.8 < ratio < 1.2 are used in the following analysis
- Not a correction, just mask the columns in both data and MC

RBRC exp. meeting

Geometry acceptance map

- INTT vertex Z given by Uniform(-10 cm, 10 cm). Centrality region: [0-70%].
- - Same requirements as the original method in DeltaEta and DeltaPhi
- Normalize the cell content (only check the acceptance)
 - Content $>= 1 \rightarrow$ set to 1
 - Otherwise \rightarrow set to 0
- Take the ratio (data/MC)

RBRC exp. meeting

Reconstruction the tracklets by the best pair method and filled the valid tracklets in the fine-binning 2D histogram (Eta bin 0.01, vtxZ bin 0.04 [cm])

Geometry acceptance map

- INTT vertex Z given by Uniform(-10 cm, 10 cm). Centrality region: [0-70%].
- - Same requirements as the original method in DeltaEta and DeltaPhi
- Normalize the cell content (only check the acceptance)
 - Content $>= 1 \rightarrow$ set to 1
 - Otherwise \rightarrow set to 0
- Rebin the histograms (Eta bin 0.2, vtxZ bin 2 [cm])
- Take the ratio (data/MC)
- Only select the region in the analysis where the difference is < 10%
- Apply the map in both data and MC
 - It's a map, not a correction

Reconstruction the tracklets by the best pair method and filled the valid tracklets in the fine-binning 2D histogram (Eta bin 0.01, vtxZ bin 0.04 [cm])

Summary

- The whole analysis flow of dNdEta is re-run
- The effect of the geometry misalignment is studied
 - Vertex XY can vary ~ 220 μ m, vtxZ dist. varies slightly
 - $\Delta \phi$ becomes wider which is similar to that of the current data
 - Relatively small variation in the reco. tracklet in mid-rapidity
- The first round of $dN_{ch}/d\eta$ result is presented
 - Vertex Z re-weighting, geometry and efficiency corrections are included
 - Some of the systematic uncertainties are evaluated
 - The data agrees with the generator-level distribution
 - Some more work on re-considering the corrections is in progress
- doc.)

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

• The cluster approach and CMS approach (in backup) are also checked (as the supporting

MC: HIJING

- In the MC, the numbers of clusters in both layers are more than the number of charged hadrons
- The per-event number of clusters in data is more than that of in MC.

RBRC exp. meeting

INTT remaining tasks

The open questions of INTT what require people to look into

Fraction of hits moved to next of BCO bin (Due to the imperfect coarse/fine delay) INTT chip timing stability (the chip timing can shift, is it a severe issue ?) Coarse delay scan practice (Have some data with different coarse-delay settings aiming at improving the INTT timing resolution, we will need to practice it for the run 2025 preparation) INTT good run list (streaming first, then triggered for p+p) INTT hit-carried-over issue (in AuAu and p+p, and mitigation strategy) Threshold setting of run 2025 (the current one underestiamtes real spectrum) Hit saturation in Run 2025

Calibration data analysis (artificial charge injection to chips) Understanding the INTT overflow tag behavior

- The discrenapcy between data and MC (Simulation optimization)
- **INTT** radiation damage
- **INTT** geometry optimization
- (Sort like closed)
 - Spikes at 43 and 46 of cluster phi size distribution
 - hit saturation issue

<u>Google slide</u>

26

Back up

The best pair approach

vtxZ [-10 cm ~ 10 cm], Centrality [0-70%], vtxZ reweighing applied in MC, alpha correction applied Eta region I ≤ 1.9 included

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Cluster Eta and Phi

RBRC exp. meeting

Cluster Z

VtxZ comparison for confirmation

RBRC exp. meeting

NClus with different selections

RBRC exp. meeting

Tracklet distributions

RBRC exp. meeting

Cluster ϕ size and cluster ADC

RBRC exp. meeting

Supporting Doc.

Further study of the chip saturation

dN/dŋ meeting

Tracklet $\Delta \phi$ as a function of tracklet η

Tracklet η

RBRC exp. meeting

Tracklet $\Delta \phi$ as a function of tracklet η

RBRC exp. meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

36

MBD behaviors

dN/dŋ meeting

SPHE

Run 54280, first 3M

PerEvent vertex Z

Current cut: DCA: 0.1 cm && DeltaPhi: 0.6 degrees (supported by the previous scan study)

RBRC exp. meeting

True vertex XY of this MC

Cheng-Wei Shih (NCU, Taiwan)

39

INTT vtx Z QA, cut intro

"gaus + offset" fit width

dN/dŋ meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHEN

Pair selection for PHOBOS approach

Pairs link to the vertex Z

Run description - 54280

- Spike appears at each end of MBD
- The mini-bias definition is not yet available (as far as I know)
- Live trigger available to constraint the MBD vertex Z

channel	Name	enabled	Scaledown	Raw	Live <\div>	Scaled	Live (%)
	Clock	yes	93810	33836274325	33663041357	358838	99.5
	ZDC South	yes	off	102829214	102308816	0	99.5
	ZDC North	yes	off	98430768	95872319	0	97.4
	ZDC Coincidence	yes	60	9417100	9370209	153672	99.5
	HCAL Singles/Coincidence	yes	off	30282609	30125423	0	99.5
		yes	off	33836274325	33663041357	0	99.5
		yes	off	0	0	0	0
		yes	off	0	0	0	0
	MBD S >= 2	yes	off	86958423	86380777	0	99.3
	MBD N >= 2	yes	off	85797943	85195687	0	99.3
	MBD N&S >= 2	yes	0	10242665	10187457	10187457	99.5
	MBD N&S >= 1	yes	off	18093659	17967450	0	99.3
	MBD N&S >= 2, vtx < 10 cm	yes	off	4021509	4000602	0	99.5
	MBD N&S >= 2, vtx < 30 cm	yes	off	5799143	5768655	0	99.5

INTI geometry

INTT: 2 sensors X 2 sides of half-ladders X 56 ladders = 224 sensors

Notation: B_xL_{yzz} x: Barrel ID (0 for inner or 1 for outer) y: Layer ID (0 for inner or 1 for outer) zz: Ladder ID (from 0 to 15)

Axis (Right-haded coordinate) x-axis: $\vec{y} \times \vec{z}$ y-axis: Vertically upward direction

Bulk TG meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

