MIPピーク位置の決定精度向上と時間 変化についての研究 2025/1/15 NWU M1 石垣 優衣 @立教ワークショップ

研究背景
 進捗
 フィットの改善
 時間変化の確認
 まとめ

1.研究背景

MIPピーク解析について

[テーマ]ppデータを用いたMIPピーク位置の時間変化の研究

FPHXチップにかかる放射線ダメージがシリコンセンサーの空乏層をfullにするために必要なバイアス電圧を増やす。 Run24で行われたpp衝突では、INTTのバイアス電圧は一定(100V)。放射線ダメージが大きければMIPピーク位置が下がるはず。

[現状の進捗] ワークショップ中にADC分布に対してMIPピーク位置の決定精度を 上げるために、セカンドピーク、サードピーク(閾値以上の信号を拾うことでおこ るヒット数が極端に多いピーク)のカットを行いフィッティングを行った。

その後、ランダウとガウスの畳み込み積分を用いたフィッティングコードを改善した。現在は2024年5月~8月までのデータを用い、放射線によってFPHXチップの劣化が起こっているのかを調べている。

2.1 フィッティングの改善

2-1.フィッティングの改善

[ワークショップでの課題]

Roofitのコードを用いてフィッティン グを行ったが、 $\chi 2/ndf$ の値をうまく 算出できず、フィット精度の比較が難 しかった。

→rootが提供しているチュートリアル コードを用いてフィットをやり直した。 コードの中でランダウ、ガウスの関数 を定義し、畳み込みのフィッティング をした。

[結果]

ランダウのみのフィットとの比較を 行った。畳み込みのフィットはピーク が右にシフトしている。

MIPピーク位置の角度依存性

MIPピーク

×MPV_landau ▲MPV_langau

	landau	lan+gau
30< <i>θ</i> <40	100.03	100
40< <i>θ</i> <50	94.95	94.82
50< <i>θ</i> <60	89.83	88.78
60< <i>θ</i> <70	86.23	85.03
70< <i>θ</i> <80	84.61	83.54
80< <i>θ</i> <90	83.87	82.39

・MIPは荷電粒子が通過した時のエネルギー損失量が最小になる粒子のこと。

・単位長さあたりのエネルギー損失 $\Delta E/\Delta x$ は、 トラッキングに用いた θ が小さい程、飛行距離 が長く、MIP値が大きい。

・結果として θ が小さい時MIP値が大きくなる 様子が見られた。

7

フィットの比較とMIPピーク値の考察

 $2\chi^2/ndf値を<math>\theta$ のカット毎に比較

	Lan+gau	Landau
30< <i>θ</i> <40	42	392
40< <i>θ</i> <50	50	300
50< <i>θ</i> <60	68	235
60< <i>θ</i> <70	49	141
70< <i>θ</i> <80	46	120
80< <i>θ</i> <90	52	115

- 畳み込み積分を用いたフィットの方が $\chi 2/ndf$ の値が低い。
- 1に近い程精度が良いが、カイスクエア/ndf値の値が大きいのが気になる。
- ランダウのみのフィットより、畳み込みのフィットの方が精度が良い

2.2 MIPピーク位置の時間変化

2.2 ピーク位置の時間変化を調べる

- 今まではRUN50889(2024/08/09)のデータのみでフィットの改善を行って きた。
- 2024年5月~8月までのデータを用い、放射線によってFPHXチップの劣化が起こっているのか時間変化を調べた。もし放射線ダメージが大きければ、年月が経つにつれてMIPピークの位置が下がっているはず。
- 今回たくさんのrootファイルを回せるようにコードを改善する時間がなかったため、RUN43392(2024/5/21)~ RUN50889(2024/08/09)までで9 ラン分持ってきて時間とMIPピーク位置のプロットを作成した。
- トラッキングに用いたθのカットは80度~100度に設定した。

ピーク位置の時間変化

RUN #		Day		MIP	
	43392		2024/5/21	-	75.99
	43404		2024/5/21	-	76.98
	43537		2024/5/23	8	34.33
	43676		2024/5/24	8	34.29
	43790		2024/5/25	8	31.92
	44447		2024/6/2	8	30.42
	48645		2024/7/18		82
	48660		2024/7/18	8	31.27
	50889		2024/8/9	8	31.43

MIPの位置が 75-85 でふらついてい る。ピーク位置の大きい変化はない。 解析の系統誤差?

2024.5.21

2024.8.9

5月~8月までのデータを用いたADC分布

今まで用いたRUN50889以外のデータでもフィットは上手くいっている。 フィットのアルゴリズムが時間変化に影響を及ぼしていることはなさそう。 FPHXチップの劣化は起こっていない?

3.まとめ

3.まとめ・今後の展望

- フィッティング手法を改善し、ランダウだけでフィットした時より も精度の良いフィットを行った。
- •2024年5月から8月までの9ラン分のデータを用いてMIPピーク位置の時間変化を調べた。
- APRの提出までには、60ラン分の時間変化のプロットを載せられる ようにコードを書き換える。
- 横軸をシミュレーションデータを用いた被爆量にする。
- MIPピーク位置を決めているZバーテックスのコードをアップデー トする。

1/15 発表議事録

- MIP位置の角度依存性は、簡単な手計算で求められるので2つのフィットモデルの結果に加えて理論計算による予想もプロットに加える。
- •フィットの範囲を変化させて、フィットの安定性を確認する。
- Run24を通してゲインの劣化は見られなかったという結果が出ているので、INTT英語ミーティングで発表する。

BACK UP (MIP基礎知識)

MIPとは

- Minimum Ionizing Particle(Ionazationではない)
- 荷電粒子が通過した時のエネルギー損失量が最小になる粒子
- <u>ΔE</u> (エネルギー損失)
- dE:失ったエネルギー、dx:単位長さ(=飛行距離)

高エネルギーを持つ荷電粒子が物質中を通過するときに 失うエネルギーは小さく、ほぼ一定の値

トラックを引いた後の日でカットをかける

エネルギー損失量($\frac{\Delta E}{\Delta x}$)は単位長さ辺りなので、飛行 距離が変わればエネルギー損失量も変わる

 θ でカットをかけていないADC分布

トラックを引いた後の日でカットをかける理由

Siチップ

エネルギー損失量($\frac{\Delta E}{\Delta x}$)は単位長 さ辺りなので、飛行距離が変わ ればエネルギー損失量も変わる

単位長さを揃えなくてはいけないので、チップへの入射角度でカットをかける

• P型の半導体とN型の半導体が接合(ダイオード)

ダイオードに逆電圧を流すと、マイナス電極側に+が集まり、プラス電極側に-が集まるので空乏 層(キャリアの存在しない部分)が出来上がる 荷電粒子が入射すると、電離作用によって電子正対が生成される。

ADC

- •アナログ信号をデジタル化した時の1信号
- ADC分布=イベントーADCのグラフは、ADCの大きさごとに積 算されていくヒストグラムとしてみれる
- DAC値=エネルギー損失(eV)の値を電圧値(mV)に変換したもの
- INTTではそのDAC値を閾値で8分割している

ADC $0 \sim 7$ DAC $0 \sim 255$

畳み込みする物理的な理由(参考:チェンウェイが送った論文)

1. エネルギー損失の分布の特徴

荷電粒子が物質を通過する際のエネルギー損失分布は統計的性質を持つ。実験結果では理論 値よりも広がりが大きくなる。

2.電子の束縛エネルギーの影響 Landau分布は自由電子を仮定しているが、固体中の電子は束縛されている。この影響がエ ネルギー損失分布を変化させる。

3.検出器のノイズ(熱雑音)をgaussで近似

※電子の束縛エネルギーとは→原子核や結晶格子内で特定の状態に束縛されている電子が、 自由になるために必要なエネルギー。電子が物質内の異なるエネルギー準位間を移動する際 のエネルギーギャップや、電子が完全に物質を脱出するのに必要なエネルギーとして現れる。
※熱雑音→内部で流れる電流や電圧が熱運動している時の雑音

BACK UP (fitting)

workshopでの進捗

- ADC分布のセカンドピーク、サードピーク(閾値以上の信号を拾うことでお こるヒット数が極端に多いピーク)のカットを行った。
- Roofitを用いて、ADC分布に対してガウスとランダウの畳み込み積分を用 いたフィッティングを行った。

ランダウ関数のみでフィットした時との比較

ランダウのみのフィットを同じプロットに表示させて比較した。 →ランダウ単体のフィットと比較して、ピーク位置が右にシフトしている

角度別に見たフィッティング(視覚的な比較)

角度を変えて見ても、ピーク位置が右にシフトしている

MPV-θを用いた比較

		MPV_landau	MPV_roofit	MPV_langau
30< <i>θ</i> <40	40	100.03	94.56	100
40< <i>θ</i> <50	50	94.95	87.89	94.82
50< <i>θ</i> <60	60	89.83	87.15	88.78
60< <i>θ</i> <70	70	86.23	83.64	85.03
70< <i>θ</i> <80	80	84.61	82.19	83.54
80< <i>θ</i> <90	90	83.87	81.17	82.39

カイスクエア/ndfによる比較

ランダウ分布のみでフィットした場合と、ランダウとガウスを畳み込んだ場合のカイスクエア/ndfの値 をθごとに比較した。

	30< <i>θ</i> <40	40< <i>θ</i> <50	50< <i>θ</i> <60	60< <i>θ</i> <70	70< <i>θ</i> <80	80< <i>θ</i> <90
畳み込みの フィッティ ング	42	50	68	49	46	52
ランダウの みのフィッ ティング	392	300	235	141	120	115

- 畳み込み積分を用いたフィットの方がカイ二乗値/ndfの値が低い。
- ランダウのみのフィットより精度が向上している。
- カイスクエア/ndf値の値が大きいのが気になる。1に近づいて欲しい。

Roofitの結果との比較

ADC distribution with a convolution function of Landau and Gau

BACK UP(bin幅、時間変化)

- ・ 熊岡さんに送って貰ったrootでbinの 影響を減らすコードを入れてみた。
- I (Use integral of function in bin instead of value at bin center)
- 影響:通常、フィット関数はbinの中心 で計算された値を比較するが、Iオプ ションを使うと、フィット関数がbin 幅全体の積分を考慮するため、bin幅 の影響を取り除ける。

7.1.1 The TH1::Fit Method

To fit a histogram programmatically, you can use the TH1::Fit method. Here is the signatures of TH1::Fit and an explanation of the parameters:

- function a pointer to the fitted function (the fit model) object. One can also use the function name. This name may be one of ROOT pre-defined function names or a user-defined function. See the next paragraph for the list of pre-defined functions.
- *option: The second parameter is the fitting option. Here is the list of fitting options:
 - \circ " W " Set all weights to 1 for non empty bins; ignore error bars
 - \circ " WW " Set all weights to 1 including empty bins; ignore error bars
 - \circ " ${\rm I}$ " Use integral of function in bin instead of value at bin center
 - "L" Use log likelihood method (default is chi-square method). To be used when the histogram represents counts
 - "WL" Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1.
 - " P " Use Pearson chi-square method, using expected errors instead of the observed one given by TH1::GetBinError (default case). The expected error is instead estimated from the square-root of the bin function value.
 - " Q " Quiet mode (minimum printing)
 - "V " Verbose mode (default is between Q and V)
 - \circ " S " The result of the fit is returned in the <code>TFitResultPtr</code> .
 - " E " Perform better errors estimation using the Minos technique
 - " M " Improve fit results, by using the IMPROVE algorithm of TMinuit.
 - \circ " ${\bf R}$ " Use the range specified in the function range
 - \circ " $\,$ N $\,$ " Do not store the graphics function, do not draw
 - "0 " Do not plot the result of the fit. By default the fitted function is drawn unless the option " N " above is specified.

tracking_run43392(2024-05-21)

MPV 75.99

Fitting ADC Distribution (80 < theta < 100) ADC EDM=3.71449e-09 STRATEGY= 1 ERROR MATRIX URATE	4 то АСС
ADC Distribution (80 < theta < 100) P Fortrian 10745	4 T0 ACC
ADC Distribution (80 < theta < 100) ADC EDM=3.71449e-09 STRATEGY= 1 ERROR MATRIX PEDM=3.71449e-09 STRATEGY= 1 ERROR MATRIX	ACC
원 EDM=3.71449e-09 STRATEGY= 1 ERROR MATRIX	ACC
Mean 141.1 NO. NAME VALUE EROR STZE DERIVATIV	F
Std Dev 123.2 1 Width 1.54892e+01 2.73094e-01 4.87322e-05 7.54715e	- -03
χ^2 / ndf 293.6 / 25 2 MP 7.59943e+01 3.71838e-01 2.55424e-04 9.24808e	-04
$\frac{3}{2} \frac{4000}{100} = \frac{3}{2} \frac{4000}{100} = \frac{3}{2} \frac{3}{100} $	+00
MP 75.99±0.37 Fitting done	-04 "
$3000 - Area 5.804e+05 \pm 4.358e+03 Plotting results$	
GSigma 22.07±0.76 FCN=572.661 FROM MIGRAD STATUS=CONVERGED 149 CALLS 15	0 ТО
2000 EDM=1.10484e-09 STRATEGY= 1 ERROR MATRIX UNG	ERTA 🖡
INTY 3.0 per cent	
EXT PARAMETER STEP FIRST	
NO. NAME VALUE ERROR SIZE DERIVATIV	E
1 Constant 2.91922e+04 3.29169e+02 5.09415e+00 -3.15736e	-08
2 MPV 7.86289e+01 3.10383e-01 -4.80726e-03 -2.29324e	-04
3 Sigma 1.93395e+01 1.66137e-01 -2.55137e-05 3.52593e	-02 🛯
ADC Value 22.0254	

tracking_run43404.root

MPV 76.98

tracking_run43537.root

MPV 84.33

1	Fitting										
	FCN=608.44	7 FROM	MIGRAD	STAT	US=CONVE	RGED	305	CALLS		306 TOTA	L
			EDM=3	41536	e-10	STRATEG	Y= 1	ER	ROR MAT	RIX ACCUR	А
	ТЕ										
	EXT PARAM	ETER					STE	P	FIF	ST	
	NO. NAM	E	VALUE		ERROR		SIZ	Έ	DERIVA	TIVE	
	1 Width		1.23047	e+01	1.78926	e-01	5.3346	0e-05	-4.008	55e-03	
	2 MP		8.43325	e +01	2.61096	e-01	1.9456	7e-04	7.181	00e-04	
	3 Area		8.40993	e+05	5.08431	e+03	7.4026	8e-07	2.895	65e–01	
	4 GSigm	а	2.13571	e+01	3.75476	e-01	6.7243	5e-05	1.202	34e-03	
	Fitting don	е									
	Plotting re	sults.	••								
	FCN=1969.5	4 FROM	MIGRAD	STAT	US=C0NVE	RGED	172	CALLS		173 TOTA	L
			EDM=1	45801	e-08	STRATEG	Y= 1	ERROR	MATRIX	UNCERTAIN	Т
	Y 1.7 per	cent									
	EXT PARAM	ETER					STE	P	FIF	ST	
	NO. NAM	E	VALUE		ERROR		SIZ	Έ	DERIVA	TIVE	
	1 Const	ant	4.44224	e+04	3.79077	e+02	1.3350)2e+00	4.827	47e–07	
	2 MPV		8.29648	e+01	2.59497	e-01	1.3888	84e-05	8.030	20e–04	
	3 Sigma		1.81516	e+01	1.06257	e-01	1.3309	95e-06	8.538	96e–02	
	24.3379										
	75.7514										
	Info in <tc< td=""><td>anvas:</td><td>:Print>:</td><td>file f</td><td>itresult</td><td>2501013</td><td>_track</td><td>ing_ru</td><td>in43537.</td><td>root_80_1</td><td>0</td></tc<>	anvas:	:Print>:	file f	itresult	2501013	_track	ing_ru	in43537.	root_80_1	0
	0.png has b	een cr	eated								
	root [1]										

tracking_run43676.root

MPV 84.29

Info	in <tcanvas:< th=""><th>:MakeDefCanva</th><th>s>: created</th><th>default TCan</th><th>vas with name c1</th></tcanvas:<>	:MakeDefCanva	s>: created	default TCan	vas with name c1
Fitti	ng				
FCN=	590.139 FROM	MIGRAD ST	ATUS=CONVERG	ED 348 CAI	LLS 349 TC
TAL					
		EDM=2.380	01e–07 ST	RATEGY= 1	ERROR MATRIX ACC
URATE					
EXT	PARAMETER			STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Width	1.18931e+01	1.85721e-	01 5.52108e-	-05 1.03643e-02
2	MP	8.42931e+01	2.77939e-	01 2.03005e-	-04 3.91128e-02
3	Area	7.67797e+05	4.86056e+	03 7.40657e-	-07 -1.39934e-01
4	GSigma	2.22006e+01	3.95998e-	01 6.90705e-	-05 -4.97228e-02
Fitti	ng done				
Plott	ing results.				
FCN=	1973.12 FROM	MIGRAD ST	ATUS=CONVERG	ED 146 CAI	LLS 147 TC
TAL					
		EDM=3.743	19e–08 ST	RATEGY= 1	ERROR MATRIX ACC
URATE					
EXT	PARAMETER			STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	4.06509e+04	3.66374e+	02 5.72456e-	+00 7.98726e-08
2	MPV	8.23996e+01	2.68447e-	01 4.81519e-	-03 1.18682e-03
3	Sigma	1.79970e+01	1.11133e-	01 1.26317e-	-05 -9.88855e-02
23.60	56				
75-88	91				

tracking run43790.root

MPV 81.92

tracking_run50889.root(2024-08-09)

MPV 81.43

EXT	PARAMETER			STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Width	1.70002e+01	1.49615e-01	5.97887e-05	-3.25558e-03
2	MP	8.14272e+01	2.08552e-01	2.65765e-04	-1.05841e-04
3	Area	2.16950e+06	8.40083e+03	1.05114e-06	1.13669e-01
4	GSigma	2.41394e+01	4.09733e-01	1.09315e-04	-2.58906e-04
Fitti	ng done				
Plott:	ing results.				
FCN=2	2882.95 FROM	MIGRAD STATE	US=CONVERGED	144 CALLS	145 TOTAL
		EDM=4.31006	e–07 STRATE	GY= 1 ERROR	MATRIX UNCERTAINTY
1.2	2 per cent				
EXT	<u>PARAMETER</u>			STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	Constant	9.71014e+04	5.44075e+02	3.61643e+00	-4.79246e-07
2	MPV	8.42280e+01	1.83185e-01	-4.04336e-03	-7.60016e-03
3	Sigma	2.16741e+01	9.10887e-02	-5.52686e-06	4.45363e-01
59.36	02				
110.88	83				