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But this relation is sometimes adopted even when the equations of state are sampled directly [LIGO&Virgo (2018)]

Some appear to think that the computation of ) more complicated than it actually is
Question: How many ODEs do we need to solve for deriving [, A, and Q ?

Naive answer: 11, and we need to combine particular and homogeneous solutions appropriately to obtain Q

Our proposal: 6 with no matching needed, and we may be able to identify variables governing each moment

(0) TOV star (ds? = —e?Vdt? + e?*dr? - (2) Spin-induced quadrupole moment Q
dP (e + P)(m + 4nP1r3) Traditional approach: We schematically solve
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Once with sources W; and W,,, nonlinear in w and dw/dr, for particular solution
m + 4mPr3 Once with W;,, = 0 = W,, to obtain homogenous solutions
%ﬁ;\ The two sets of solutions are combined to ensure regularity at the stellar surface
Relativistic Bernoulli’ theorem gives the metric and then we can extract information of the quadrupole moment ... a bit messy
( ZM) dP But they cannot be combined to a master equation because Ly, # const. in the star
v=In|1l H, H = f
r e(P)+P Our proposal: We force the above matrix to be “diagonalized” by introducing
We may also change independent variable q(r) =v(@) + f(r)h(r)
from r to for H for handling the surface H = 0 Along with determining the auxiliary function f by
(see, e.g., Lindblom 1992 for discussions) df 2 dv 2 m dv
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(1) Moment of inertia | (j = e

we need to solve the following equation only once to obtain the quadrupole moment
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Similar for tidal deformability A (Postnikov+ 2010) I and Q are determined by surface values of w and {f, g}, respectively (see the paper)

Application: assessment of universal, I-Love-Q relation

It is known that the “universality” tends to be achieved for (1) stiff equations of state and/or (2) high compactness
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Conversely, universality is realized when the variation length scale is comparable or longer than the stellar radius
cf. other universality <-> correlation length in critical phenomena, scattering length in few-body quantum systemes, ...
[But recall the universality for (2) is enforced by the black-hole limit despite short-scale variations for all n’s]
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