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Introduction and motivation
▶ Ejecta from binary neutron-star (BNS) mergers: Main source for heavy elements r-process.

▶ GW170817 + Ejecta → r-process → Kilonova → “blue”: lanthanide-poor, low-opacity ejecta (with
electron fraction Ye ≳ 0.25); “red”: lanthanide-rich, high-opacity ejecta (with Ye ≲ 0.25).

▶ Problem: Red component: too massive for dynamical ejecta only. blue component: too fast from
the polar ejecta for a long-lived remnant [4].

▶ Current explanations: tidal ejecta in asymmetric binaries for red component and disk winds
from prompt black hole collapse or short-lived remnants (∴ stop electronization for suppressing
too much blue component).

▶ Uncertainties: Equation of state (EOS), remnant lifetime, neutrino microphysics and schemes.

▶ Muons/antimuons (µ−/µ+) and muonic weak interactions, have been ignored for any BNS
simulations. Alternative explaination for the problem?

Methods
First self-consistent general-relativistic neutrino
radiation hydrodynamics (GRRHD) simulations
with moment-based neutrino scheme [2]:
▶ npeµ-matter (ρ, T , Ye, Yµ).

▶ Weak interactions: Electronic/Muonic
β-processes (Weakhub [1]),
e.g., µ− + p ↔ νµ + n; µ+ + n ↔ ν̄µ + p

▶ SFHo (soft) and DD2 (stiff) EOSs

▶ Equal-mass, a low total mass of 2.5 M⊙

▶ 5-ν case: νe, ν̄e, νµ, ν̄µ, νx ∈ [ντ , ν̄τ ],
3-ν case: νe, ν̄e, νx ∈ [νµ, ν̄µ, ντ , ν̄τ ]

Results
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Top: evolution of the maximum rest-mass density ρmax and temperature Tmax.
Bottom: neutrino luminosities Lν ; In both panels, the shaded region denotes
the time when trapped neutrino equilibrium is attained.

▶ Muonic processes redirect energy reserved for protonization by electronic processes.

▶ Cold β-equilibrium: Muons already exist inside cold NSs Y max
µ ∼ 0.02.

▶ µ− tend to stay/be produced in high-ρ and high-T environment.

▶ Muonic β-processes ⇒ Muonization at merger ⇒ Y max
µ increases to 0.05

⇒ stronger emission for νx (e.g. ν̄µ and νµ) & weaker for ν̄e and νe
⇒ colder remnant (5-10 MeV lower at high-density regions)

▶ Reached trapped neutrino β equilibrium ∼ 6-7 ms after merger.

▶ Trapped ν hierarchy: µν̄e > µνx > µνe (3-ν) VS µν̄µ
> µν̄e > µνx > µνe > µνµ

(5-ν) .

▶ Muonization (merger), de-muonization in disk (postmerger):
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T and muon fraction Yµ in Inspiral, Merger, Postmerger phases. The dotted, dash-dotted, dashed, and
solid lines show rest-mass density contours at 1011, 1012, 1013, and 1014 g cm−3.
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Proton fraction Yp = Ye + Yµ. The top (bottom) rows are polar (equatorial) views.

▶ Much lower Yp for polar wind and disk (Yµ ≪ Ye in differ-
ent regions).

▶ Absence of strong electronization at pole.

▶ 1. Colder remnant ⇒ weaker νe-reabsorption in disk
and weaker e+-capture in hot ring/pole.

2. Changed trapped ν hierarchy: µν̄e ↓
3. Disk: Muonic interactions (de-muonization) compete

with electronic interactions

▶ Another possible explanation for kilonova
with a long-lived remnant!

R-process nucleosysthesis
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Abundance yields vs the mass number A of nuclei. Black filled circles are solar
abundance and All abundances are rescaled by A = 132 of the solar abundance.

▶ Total ejecta mass of 5-ν is 2
times lower; more neutron-rich
from disk-wind.

▶ Ejecta is processed by
Skynet [3].

▶ 5-ν: 100% increase in the
yields of lanthanides (blue-
shaded); an order of magni-
tude larger yields for elements
shaded orange; 18% better
match in the actinides.
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