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Introduction

Background
The pasta phases—the exotic inhomogeneous phases with nonspherical symmetry—in the
inner crust of neutron stars are crucial for the phenomenology of the star. To fully under-
stand the phases, one needs 3D coordinate-space simulations.

Technique to simulate the pasta phases
One approach to the simulations is to use the energy density functional method of Hartree-
Fock-Bogoliubov (HFB) theory.

The HFB theory involves the following mean-field Hamiltonian:
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Here, ca is the annihilation operator of particles, which are the free neutrons in the inner
crust; The indices a, b label the degrees of freedom of the particles, which are space coor-
dinates r and spin σ = ±1/2 in this setup; hab is the single particle Hamiltonian; ∆ab is
the pairing gap; µ is the chemical potential.

One can diagonalize the Hamiltonian by the Bogoliubov transformation, ca =
∑

α(aαuαa+
a†αv

∗
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where we refer to HHFB as the HFB Hamiltonian.

The ground state of the system should be the vacuum state of the quasiparticles. At finite
temperature, the ground-state normal and pair densities are

ρab = ⟨c†bca⟩ =
∑
α

[f (ϵα)uαau
∗
αb + (1− f (ϵa)) v

∗
αavαb] , (3)

κab = ⟨cbca⟩ =
∑
α

[f (ϵα)uαav
∗
αb + (1− f (ϵα)) v

∗
αauαb] , (4)

where f(ϵα) = 1/(1 + eEα/T ) is Fermi-Dirac distribution of the quasiparticles.

To determine hab, ∆ab, ρab, κab, the energy density functional method of HFB theory
introduces the energy of the system as a functional of the densities, E[ρ, κ], and conducts
the following steps:
1. Start from some initial guess of hab and ∆ab

2. Use Eq. (2) to solve uαa and vαa.

3. Use Eqs. (3), (4) to solve ραβ and καβ.

4. Update hab and ∆ab using

hab =
δE

δρba
, ∆ab =

δE

δκ∗
ab

. (5)

5. Conduct step 2–4 iteratively until ραβ and καβ converge.

Goal
In the above recipe, step 2 is the most time-consuming. If one solves Eq. (2) by diag-
onalization, the time complexity is of O(N 3) with N being the number of space lattice
sites, which is formidably expensive for 3D coordinate-space simulation. To reduce the
time complexity, in this work, we, for the first time, study the Fermi Operator Expansion
(FOE) method of HFB theory with band structure.

Formulation

To study the pasta phase, we consider a system under a periodic potential, which is invariant
under a translation vector T . In this case, the index of the quasiparticles, α, becomes the
Bloch wave vector k and the band index n. The HFB equation becomes∑

σ′

∫
dr′Hk

HFB(rσ, r
′σ′)
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ṽkn(r
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)
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Here, as mentioned in the previous section, the indices a, b are rewritten as r, σ and r′,
σ′, respectively; Hk

HFB = e−ik·xHHFBe
ik·x.

We introduce the generalized density matrix defined as

R =

(
ρ κ

−κ∗ 1− ρ∗

)
. (7)

After a series of algebraic calculations, we prove

R =
1

Nk

∑
k

Rk =
1

Nk

∑
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eik·xf (H̃k
HFB)e

−ik·x. (8)

Here, H̃k
HFB is the projection of Hk

HFB on the subspace spanned by periodic functions with
respect to the translation T ; f (H̃k

HFB) is a matrix function of H̃k
HFB; Nk is the number of

Bloch wave vectors in the numerical calculation.

Instead of solving f (H̃k
HFB) by diagonalization, we expand it as a series of polynomials. We

have

f (H̃k
HFB) =

a0
2
+

Ncheb∑
k=1

akTk(H̃
k
HFB/ϵr), (9)

Here, Tk(x) are Chebyshev polynomials; ϵr is the estimated maximum quasiparticle energy;
a0, ak are the coefficients of Chebyshev expansion that can be computed in advance by
considering the expansion of the scalar Fermi-Dirac distribution; Ncheb is a large number
where we truncate the expansion.

Based on Eq. (9), we compute Rk using the recursive property of the Chebyshev polyno-
mial:

Rk
ij =

a0
2
δij +

Ncheb∑
k=1

ak⟨i0;k|jk;k⟩, (10)

|j0;k⟩ = e−ik·x|j⟩, |j1;k⟩ = (H̃k
HFB/ϵr)|j0;k⟩, (11)

|jk;k⟩ = 2(H̃k
HFB/ϵr)|jk−1;k⟩ − |jk−2;k⟩. (12)

Here, |j⟩ is the unit column vector with δij as the i-th element in a given representation.
The convergence speed of the Chebyshev polynomials does not depend on the number of
lattice sites, so this algorithm is of O(N 2) complexity. Furthermore, at finite temperature,
the system is likely to be nearsighted, which means that there is a finite rN , such that
R(rσ, r′σ′) ≃ 0 if |r − r′| > rN . If this holds, the time complexity reduces to O(N).

Results

We verify the FOE method by considering
a slab phase as shown in Fig. 1. We choose
the temperature and chemical potential as
T = 0.1MeV, µ = 10MeV, which are typ-
ical values in the inner crust. We choose
h = K + U(z), where K is the kinetic
part and U(z) is a periodic potential with
U(z) = −U0/(1 + e(|z|−z0)/a) at −L/2 <
z < L/2. U0 = 50.00MeV, z0 = 10.00 fm,
a = 2.00 fm, L = 48.00 fm. We assume zero-
region interaction of pairs, ∆(z) = gκ(z),
and determine ∆(z) using the energy den-
sity functional method. We choose g = 150–
200MeV · (fm)3 such that the average pair-
ing gap is |∆̄| ∼ 1.00MeV.
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FIG.1: Schematic image of the slab
phase.

We introduce local densities ρ(z) =
∑

σ ρ(r, σ, r, σ) and κ(z) = ρ(r,+1/2, r,−1/2).
(The densities does not depends on x, y and x′, y′ if x = x′ and y = y′.) We plot the ρ(z),
κ(z) from the FOE method and the matrix diagonalization method of Eq. (2) on Fig. 2, 3.
These figures show that with an increase of Ncheb, both ρ(z) and κ(z) steadily approach
the results of the diagonalization method. Furthermore, in these figures, the temperature
is significantly low, but the densities still converge after a finite number of terms. This
shows that although the FOE method is formulated for the finite temperature system, it
applies to zero temperature systems as well.
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FIG. 2: The normal densities ρ(z) and
pair densities κ(z) from the FOE
method with fixed Ncheb. The red

dotted line is the result of the matrix
diagonalization method. The average

pairing gap is |∆̄| = 0.89MeV.
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FIG. 3: The same as Fig. 2 but with
Ncheb adaptively determined on each

space lattice site. We have Ncheb ≃ 2500
near z = 0.

Conclusion

We introduce the FOE method of HFB band theory. The FOE method identifies the
generalized density matrix with f(H̃k

HFB), and computes f (H̃k
HFB) by expanding it into

Chebyshev series. It allows the calculation of normal and pair densities without diagonal-
izing the HFB Hamiltonian, and is a useful method for the HFB band theory calculation
in the coordinate-space representation. It provides a promising tool for the simulation of
the pasta phases in the inner crust of neutron stars.


