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NS oscillation modes
• axial parity

• spacetime (w-) modes
• torsional (t-) modes
• rotational (r-) modes
• magnetic modes

• polar parity
• fundamental (f-) modes
• pressure (p-) modes
• gravity (g-) modes
• spacetime (w-) modes
• shear (s-) modes
• interface (i-) modes
• inertial (i-) modes
• magnetic modes
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Neutron stars as GW sources (II)

Fluid part (oscillations) Non-axisymmetric mass 
quadrupole (“mountains”)  

Continuous emission                    

QPOs at 22+3-2 Hz & 51+2-2 Hz were detected 
at the pre-merger stage preceding GRB211211

(Xiao+22)
↓ 

result of the resonant shattering 
(due to tidal interactions) 

of one of the stars’ crust prior to coalescence, 
leading to the excitation of crustal oscillations 

(Tsang+12;13;Suvorov+22)?

under the angular transformation 
(𝜃→𝜋-𝜃, 𝜙→𝜋+𝜙), 

a spherical harmonic function 
with index ℓ transforms as 

   (-1)ℓ+1 : axial parity / (-1)ℓ : polar parity

we focus on



Resonant shattering
• Precursors 1‒10 s prior to the main flare were detected 
with high significance for three SGRBs out of the 49 (Troja+10)
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Figure 3. Schematic of the resonant shattering process. The gravitational
potential of the system is the ultimate source of the energy powering the
resonant flare. During close passage, or at resonance for circular orbits, tidal
resonance transfers energy from the orbit (A) to the i-mode (B) at a rate
!1050 erg s−1. The i-mode grows quickly until the maximum strain at the
base of the crust exceeds the breaking strain at mode energy ∼1047 erg. A
fracture occurs, releasing ∼1043 erg of low-frequency seismic energy (C) per
fracture, however, the mode continues to be driven by the resonance. As more
fractures occur, more energy is deposited into seismic energy in the crust.
When the total seismic energy in the NS crust exceeds the elastic limit of the
curst Eelastic ∼ 1046 erg, the crust shatters, scattering the mode energy and
elastic energy to high-frequency oscillations (D). High-frequency oscillations
can couple strongly to the magnetic field (Blaes et al. 1989; Thompson & Blaes
1998) by strongly vibrating their footprints (E). Strong perturbations of the
magnetic field at the neutron star surface drive strong electric fields, which can
accelerate charged particles, triggering pair production and a relativistic fireball
with luminosity 1047–1048 erg s−1.
(A color version of this figure is available in the online journal.)

are expected to be up to ∼1047–1048 erg s−1 (Tsang et al. 2012)
if the precursor flare timescales are assumed.

Troja et al. (2010) found precursors occurring in 3 of the 49
soft gamma repeaters analyzed, implying that not every binary
merger should result in a detectable shattering flare. We note that
the extraction of seismic energy from the crust by the magnetic
field is limited by the strength of the magnetic field at the surface
of the NS. The maximum luminosity that can be extracted from
the crust by the magnetic field can be estimated by

Lmax =
∫

surf
(v × B) × B · d A

∼ 1047erg s−1(v/c)(Bsurf/1013G)2(R/10 km)2, (9)

where v is the maximum velocity of the perturbation to the
field line, R is the NS radius, and Bsurf is the local surface
field strength, which can be significantly higher than the large
scale dipole field. Thus, only shattering flares from NSs with
sufficiently strong surface fields can be detected.

4. ELECTROMAGNETIC COUNTERPARTS TO
GRAVITATIONAL WAVE BURSTS

To calculate the expected GW S/N due to parabolic encoun-
ters, we follow the procedure outlined in Kocsis et al. (2006).
The strain caused by a GW burst due to a parabolic encounter
is given by (Flanagan & Hughes 1998)

h(f ) =
√

3
2π

G1/2

c3/2

1 + z

dL

1
f

√
dE

df
[(1 + z)f ], (10)

where z is the redshift, dL is the luminosity distance, and dE/df
is the total GW energy emitted by encounter per unit frequency,
which is given for a parabolic (e = 1) encounter in the non-
relativistic limit by Equation (46) from Turner (1977). The S/N
for a sky- and orientation-averaged signal on a single detector
is given by (Dalal et al. 2006; Nissanke et al. 2010)

S/N = 8
5

√∫ ∞

0

|h(f )|2
Sn(f )2

df , (11)

where Sn(f ) is the spectral noise density for a given detector. In
Figures 1 and 2, the S/N is shown for the NS–NS and BH–NS
encounters assuming a single encounter at 50 Mpc (z & 0.011)
for advanced LIGO, with spectral noise density given by Harry
et al. (2010).

Blind detection (S/N ! 6 coincident at each detector; see,
e.g., Aasi et al. 2013) of a single GW burst from a NS close
encounter would be extremely challenging at reasonable dis-
tances, with fairly low S/N even for close passages, in particular
for NS–NS encounters. Using X-ray or gamma-ray detections of
resonant shattering flares as electromagnetic counterparts, trig-
gered GW searches could be performed, significantly lowering
the S/N threshold for GW burst detection (Kochanek & Piran
1993; Nissanke et al. 2010; Kelley et al. 2013; Dietz et al. 2013).
Networks of detectors can also be used to enhance burst detec-
tion through coincident and coherent methods (Schutz 2011;
Nissanke et al. 2013; Aasi et al. 2013).

Kocsis & Levin (2012) also show that repeated GW bursts
from eccentric captures can be combined with the final chirp to
boost the integrated S/N by roughly an order of magnitude, and
would optimistically allow detection of bursts from BH–NS
eccentric captures out to ∼300 Mpc, and NS–NS encounters
to ∼150 Mpc. The pattern of these repeated bursts can be
modeled for given orbital parameters. Resonant shattering flares
can be seen significantly farther than the GW bursts. If they
occur for a given system, then they will happen for sufficiently
close passages, which are also those that contribute the largest
component of the GW burst signal. If repeated flares are seen,
then these could also be used to characterize the orbit and
target a burst search to accumulate S/N over multiple passages.
However, significant changes to the current GW templates may
be necessary to detect eccentric captures and mergers (East et al.
2013; Huerta & Brown 2013).

5. EVENT RATES

Close encounters of NSs with other compact objects are much
more likely to occur in dense stellar environments, such as
globular clusters and galactic nuclei. While it is beyond the
scope of this paper to perform an extremely detailed evaluation
of the event rates for close encounters of compact objects, we
will briefly discuss the event rates for such encounters in both
of these environments and provide updated estimates for some
of the rates in the literature.

5.1. Globular Clusters

Kocsis et al. (2006) calculated the parabolic encounter rate for
compact objects in globular clusters using simplified globular
cluster models, predicting a rate of !1 detection per year
for advanced LIGO in optimistic scenarios. However, their
detection rates are dominated by rare distant events involving
close encounters of !20 M' BHs.
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Figure 1. Swift/BAT mask-weighted light curves (15–150 keV) of short GRBs with a possible precursor activity. Dashed vertical lines mark the precursor duration.
The precursors of GRB080702A and GRB050724 are shown in greater detail in the insets. For comparison, we also show the background-subtracted light curves of
Fermi/GBM (090510 and 081024A) and Suzaku/WAM (091117).
(A color version of this figure is available in the online journal.)

the number of false detections (∼96% of false positives).
However, our search was not performed on the whole image,
as the source position was a priori known. This reduces the
number of trials by a factor of ∼3 × 104, i.e., the number of
independent pixels in a BAT image, with respect to a blind
search and the 6.5σ threshold poses therefore a too restrictive
cut.

We determined the probability to have a spurious Nσ de-
tection at a fixed position through Monte Carlo simulations.
An inspection of the detector plane images (DPIs) shows no
noisy detectors during the selected time intervals, and there-
fore statistical fluctuations are the dominant source of noise. By
assuming a Poissonian distribution with a mean count rate of
∼0.12 counts s−1 det−1, we simulated 105 source-free DPIs and
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Figure 1. Swift/BAT mask-weighted light curves (15–150 keV) of short GRBs with a possible precursor activity. Dashed vertical lines mark the precursor duration.
The precursors of GRB080702A and GRB050724 are shown in greater detail in the insets. For comparison, we also show the background-subtracted light curves of
Fermi/GBM (090510 and 081024A) and Suzaku/WAM (091117).
(A color version of this figure is available in the online journal.)

the number of false detections (∼96% of false positives).
However, our search was not performed on the whole image,
as the source position was a priori known. This reduces the
number of trials by a factor of ∼3 × 104, i.e., the number of
independent pixels in a BAT image, with respect to a blind
search and the 6.5σ threshold poses therefore a too restrictive
cut.

We determined the probability to have a spurious Nσ de-
tection at a fixed position through Monte Carlo simulations.
An inspection of the detector plane images (DPIs) shows no
noisy detectors during the selected time intervals, and there-
fore statistical fluctuations are the dominant source of noise. By
assuming a Poissonian distribution with a mean count rate of
∼0.12 counts s−1 det−1, we simulated 105 source-free DPIs and
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Double-layer model 
(lasagna sandwich)
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density

linear response : fluid
(Landau)

slab-like
µcy =

2
3
ECoul ×10

2.1(w2−0.3)

cylindrical

ECoul : Coulomb energy per unit volume
w2 : volume fraction

(Potekhin+98)

(Strohmayer+ 91) spherical

àtwo elastic regions
 (i) spherical + cylindrical (sp+cy) 
(ii) tube + bubble (tu+bu)

àbubble ~ spherical
tube ~ cylindrical

HS+19
crustcore

© Setonaikai Broadcasting Corporation



EOSs & NS properties
• we simply adopt two OI-EOSs

• crust thickness strongly depends on L and M/R
• as L and M/R increase, crust thickness decreases
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TABLE I. The EOS parameters adopted in this study. SP-C, C-S, S-CH, CH-SH, and SH-U denote the transition densities for
the OI-EOSs characterized by K0 and L. In addition, for the 1.4M! neutron star model constructed with each EOS, the ratio of
the thickness of the elastic region composed of spherical and cylindrical nuclei, ∆RSpCy, and that composed of cylindrical-hole
and spherical-hole nuclei, ∆RCHSH, to the stellar radius, R, is also listed.

K0 (MeV) L (MeV) SP-C (fm−3) C-S (fm−3) S-CH (fm−3) CH-SH (fm−3) SH-U (fm−3) ∆RSpCy/R ∆RCHSH/R

230 42.6 0.06238 0.07671 0.08411 0.08604 0.08637 0.0007731 0.05406
230 73.4 0.06421 0.07099 0.07284 0.07344 0.07345 0.0003773 0.06740

version of the extended Thomas-Fermi theory [44, 45]. This is because n0, w0, and S0 are well constrained from
the terrestrial experiments, while the other parameters, i.e., K0 and L (and the additional saturation parameters
associated with the higher terms), are relatively more difficult to be constrained experimentally. Nevertheless, the
constraint on K0 is gradually becoming more severe, i.e., K0 = 240 ± 20 MeV [46], while L is still less constrained
[18, 47]. So, in this study, we especially adopt the EOS models with K0 = 230 MeV. In Table I, we list the EOS
parameters adopted in this study, where we also show the transition density from a specific pasta phase to the next
pasta phase. We note that the crust thickness strongly depends on L and stellar compactness, M/R, [45, 48], i.e., the
thickness decreases as L and M/R increase, and the pasta structures almost disappear, using the EOS model with
L>∼ 100 MeV [45].

The shear modulus, µ, is an additional integrant to discuss the shear oscillations. The shear modulus, µsp, in the
body-centered cubic (bcc) lattice composed of the spherical nuclei has been formulated as a function of the ion number
density, ni, the charge number of the ion, Z, and a Wigner-Seitz cell radius, a, i.e., 4πa3/3 = 1/ni [49]:

µsp = 0.1194
ni(Ze)2

a
. (5)

This expression of the shear modulus should be modified a little due to the phonon contribution [50], the electron
screening effect [51], the polycrystalline effect [52], and the effect of finite-sizes of atomic nuclei [53], but in this study,
we simply adopt the standard expression given as Eq. (5). On the other hand, the shear modulus, µcy, in the phase
composed of the cylindrical nuclei is expressed as a function of the Coulomb energy per volume of a Wigner-Seitz cell,
ECoul, and the volume fraction of cylindrical nuclei, w2, as

µcy =
2

3
ECoul × 102.1(w2−0.3), (6)

and the shear modulus, µsl, in the phase composed of the slab-like nuclei can be considered as

µsl = 0 (7)

against the linear perturbations, i.e., the deformation energy due to the distortion becomes of higher order contribu-
tion [54]. Additionally, the shear modulus, µch (µsh), in the phase composed of the cylindrical-hole (spherical-hole)
nuclei can be derived in the same way as µcy (µsp) because the liquid crystalline structure of cylindrical-hole (spherical-
hole) nuclei is the same as that of cylindrical (spherical) nuclei (see Ref. [27] for details). In Figs. 1 and 2, as an
example, we show the radial profile of energy density and shear modulus for the stellar model with 1.4M" and 12.4
km constructed using the OI-EOS with K0 = 230 and L = 73.4 MeV.

III. PERTURBATION EQUATIONS

In this study, we simply adopt the relativistic Cowling approximation, i.e., the metric is fixed during the fluid
oscillations. Even with this approximation, one can qualitatively discuss the behavior of eigenfrequencies [55]. The
Lagrangian displacement, ξi, for the polar-type oscillations is generally given with the spherical harmonics, Y!m(θ,φ),
by

ξi =

(
rW, V

∂

∂θ
, V

1

sin2 θ

∂

∂φ

)
Y!m(θ,φ)eiσt, (8)

where W and V are the functions of r and σ is the eigenvalue, while the pressure perturbation, δp, is expressed with
the energy density, ε, and pressure, p, for the equilibrium models as

δp = (ε+ p)H(r)Y!m(θ,φ)eiσt. (9)
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FIG. 1. Radial profile of energy density for the neutron star model with 1.4M! and 12.4 km, using the EOS with L = 73.4 MeV.
In the top panel, the vertical dashed lines from left to right denote the boundary between the core and crust, the boundary
between the inner and outer crust, and the boundary between the crust and envelope.
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FIG. 2. The effective shear modulus for various phases in neutron star curst. The bottom panel is an enlarged view of the shaded
region shown in the top panel, where Sp, Cy, CH, and SH denote the phases composed of spherical, cylindrical, cylindrical-hole,
and spherical-hole nuclei, respectively. We note that the shear modulus in the phase of slab-like nuclei becomes zero against the
linear response [54]. For reference, we show the boundary between the core and crust and the boundary between the crust and
envelope in the top panel, and the boundary between the core and SH; the boundary between CH and the phase of slab-like
nuclei; and the boundary between the phase of slab-like nuclei and Cy in the bottom panel with the dashed lines.
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Stellar models
• To understand the dependence of eigenfrequencies excited in NSs 
on the presence of elasticity, we consider four models
①NS composed of fully zero-elastic “fluid” 
②NS with elastic phase composed of spherical nuclei, “Sp” 
③NS with elastic phase composed of spherical and cylindrical nuclei, “Sp+Cy” 
④ “realistic” NS model with elastic phase composed of Sp, Cy, CH, & SH nuclei 

• First, we focus on a specific NS model with 1.4M⊙ and 12.4 km 
constructed with L = 73.4 MeV 
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② Sp
③ Sp+Cy
④ realistic

elastic



Behavior of eigenfrequencies

• Frequencies with Δ=0 correspond to the eigenfrequencies
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FIG. 3. The absolute values of ∆ given by Eq. (20) are shown as a function of the frequencies. The eigenfrequencies correspond
to the specific frequencies, with which the absolute value of ∆ at some position inside the star becomes zero. In the left pane, we
show the results for the stellar model composed of only the fluid with the solid line and that including a non-zero elastic region
composed of spherical nuclei with the dotted line. In the middle panel, we show the results for the stellar model including a
non-zero elastic region composed of spherical nuclei with the dotted line and that including a non-zero elastic region composed
of spherical and cylindrical nuclei with the solid line. The right panel is just an enlarged view of the middle panel, where we
also show the result for the “realistic” stellar model with the dashed line. The neutron star model is the same as in Fig. 2.

composed of spherical nuclei, “Sp”; (iii) the stellar model with elastic phase composed of spherical and cylindrical
nuclei, “Sp+Cy”; and (iv) the “realistic” stellar model with elastic phase composed of spherical, cylindrical, cylindrical-
hole, and spherical-hole nuclei as shown in Fig. 2. That is, we focus on a specific neutron star model with 1.4M! and
12.4 km constructed with the EOS with L = 73.4 MeV, but the shear moduli in some elastic phases are artificially
put to zero except for the realistic stellar model. In Fig. 3, one can see how the eigenfrequencies depend on the elastic
phases, where the absolute value of ∆ at the boundary between the crust and envelope is shown as a function of the
frequency, i.e., the eigenfrequencies correspond to the frequency where abs(∆) = 0.

In the left panel of Fig. 3, we show the results for the “fluid” model with the solid line and for the “Sp” model
with the dotted line. From this figure, one can observe the excitation of the shear (si-) and interface (ii-) modes
together with the fundamental (f -) and pressure (pi-) modes in the “Sp” model (see also the right panel), where f -
and p1-mode frequencies excited in the “Sp” model are almost the same as those excited in the “fluid” model. That is,
the presence of the elasticity hardly affects the acoustic oscillations. In the middle panel, we show the results for the
“Sp” model with the dotted line and for the “Sp+Cy” model with the solid line. From this result, one can observe that
the si-mode frequencies in the “Sp+Cy” model become smaller than those in the “Sp” model. In the right panel, we
show an enlarged view of the middle panel, where we also show the results for the “realistic” model (SpCy+CHSH).
From the right panel, one can observe that the i2-mode frequency in the “Sp+Cy” model is the same as that in
the “Sp” model, while the i1-mode frequency strongly depends on the presence of the phase composed of cylindrical
nuclei. In addition, for the “realistic” model one can observe an additional mode, i.e., the i3-mode, together with
the i1- and i2-modes excited in the “Sp+Cy” model. In particular, except for the excitation of the i3-mode, we find
that the eigenfrequencies excited in the “realistic” model are the same as those in the “Sp+Cy” model at least in the
frequency domain shown in Fig. 3. This may be because the phase composed of cylindrical-hole and spherical-hole
nuclei is quite narrow and the effect can not appear in the frequency domain considered here, as discussed below.

The ii-modes are the eigenmodes excited due to the presence of the interface between the phases with zero and
non-zero elasticity [42]. That is, we have only two i-modes in the “Sp+Cy” model as shown in the right panel of
Fig. 3, because there are two interfaces, i.e., the interface between the envelope and crust and the interface between
the phases composed of cylindrical and slab-like nuclei. In Fig. 4 we show the amplitude of eigenfunctions, W and
V , for i2-mode (i1-mode) in the top (bottom) panel excited in the “realistic” model, where the vertical dotted lines
denote the boundary between the envelope and crust (Sp/envelope); the boundary between the phases of cylindrical
and slab-like nuclei (Slab/Cy); the boundary between the phases of slab-like and cylindrical-hole nuclei (CH/Slab);
and the boundary between the phase of spherical-hole nuclei and core (core/SH). From this figure, one can see that
the i2-mode is associated with the interface between the envelope and crust, while the i1-mode is with the interface
between the phases composed of cylindrical and slab-like nuclei. This may be a reason why the i2-mode frequency in
the “Sp” model is the same as that in the “Sp+Cy” model, as shown in the right panel of Fig. 3. Anyway, in the
“realistic” model, one can see the tiny effect of the non-zero elasticity in the phase composed of cylindrical-hole and
spherical-hole nuclei in the amplitude of eigenfunctions, even for the i1- and i2-modes (e.g., see the inset in the top
panel of Fig. 4). Moreover, in Fig. 5, we show the amplitude of the i3-mode in the top panel, while an enlarged view
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composed of spherical nuclei, “Sp”; (iii) the stellar model with elastic phase composed of spherical and cylindrical
nuclei, “Sp+Cy”; and (iv) the “realistic” stellar model with elastic phase composed of spherical, cylindrical, cylindrical-
hole, and spherical-hole nuclei as shown in Fig. 2. That is, we focus on a specific neutron star model with 1.4M! and
12.4 km constructed with the EOS with L = 73.4 MeV, but the shear moduli in some elastic phases are artificially
put to zero except for the realistic stellar model. In Fig. 3, one can see how the eigenfrequencies depend on the elastic
phases, where the absolute value of ∆ at the boundary between the crust and envelope is shown as a function of the
frequency, i.e., the eigenfrequencies correspond to the frequency where abs(∆) = 0.

In the left panel of Fig. 3, we show the results for the “fluid” model with the solid line and for the “Sp” model
with the dotted line. From this figure, one can observe the excitation of the shear (si-) and interface (ii-) modes
together with the fundamental (f -) and pressure (pi-) modes in the “Sp” model (see also the right panel), where f -
and p1-mode frequencies excited in the “Sp” model are almost the same as those excited in the “fluid” model. That is,
the presence of the elasticity hardly affects the acoustic oscillations. In the middle panel, we show the results for the
“Sp” model with the dotted line and for the “Sp+Cy” model with the solid line. From this result, one can observe that
the si-mode frequencies in the “Sp+Cy” model become smaller than those in the “Sp” model. In the right panel, we
show an enlarged view of the middle panel, where we also show the results for the “realistic” model (SpCy+CHSH).
From the right panel, one can observe that the i2-mode frequency in the “Sp+Cy” model is the same as that in
the “Sp” model, while the i1-mode frequency strongly depends on the presence of the phase composed of cylindrical
nuclei. In addition, for the “realistic” model one can observe an additional mode, i.e., the i3-mode, together with
the i1- and i2-modes excited in the “Sp+Cy” model. In particular, except for the excitation of the i3-mode, we find
that the eigenfrequencies excited in the “realistic” model are the same as those in the “Sp+Cy” model at least in the
frequency domain shown in Fig. 3. This may be because the phase composed of cylindrical-hole and spherical-hole
nuclei is quite narrow and the effect can not appear in the frequency domain considered here, as discussed below.

The ii-modes are the eigenmodes excited due to the presence of the interface between the phases with zero and
non-zero elasticity [42]. That is, we have only two i-modes in the “Sp+Cy” model as shown in the right panel of
Fig. 3, because there are two interfaces, i.e., the interface between the envelope and crust and the interface between
the phases composed of cylindrical and slab-like nuclei. In Fig. 4 we show the amplitude of eigenfunctions, W and
V , for i2-mode (i1-mode) in the top (bottom) panel excited in the “realistic” model, where the vertical dotted lines
denote the boundary between the envelope and crust (Sp/envelope); the boundary between the phases of cylindrical
and slab-like nuclei (Slab/Cy); the boundary between the phases of slab-like and cylindrical-hole nuclei (CH/Slab);
and the boundary between the phase of spherical-hole nuclei and core (core/SH). From this figure, one can see that
the i2-mode is associated with the interface between the envelope and crust, while the i1-mode is with the interface
between the phases composed of cylindrical and slab-like nuclei. This may be a reason why the i2-mode frequency in
the “Sp” model is the same as that in the “Sp+Cy” model, as shown in the right panel of Fig. 3. Anyway, in the
“realistic” model, one can see the tiny effect of the non-zero elasticity in the phase composed of cylindrical-hole and
spherical-hole nuclei in the amplitude of eigenfunctions, even for the i1- and i2-modes (e.g., see the inset in the top
panel of Fig. 4). Moreover, in Fig. 5, we show the amplitude of the i3-mode in the top panel, while an enlarged view



why only three i-modes
• The number of the i-modes is the same as the number of interfaces?
• Dependence of the i-mode frequencies on the thickness of an elastic region 
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of the top panel is shown in the bottom panel. One can observe that the amplitude of the i3-mode becomes dominant
inside the region composed of the cylindrical-hole and spherical-hole nuclei. We also find that only three interface
modes are excited in the “realistic” model, even though four interfaces exist in the “realistic” model, i.e., Sp/envelope,
Slab/Cy, CH/Slab, and core/SH. This may come from the fact that the region composed of cylindrical-hole and
spherical-hole nuclei is too narrow. In fact, if the elastic region becomes too narrow, the number of excited interface
modes can become less than the number of interfaces, as shown in Appendix D. Furthermore, if one considers the
neutron star model using the EOS with L = 42.6 MeV, where the ratio of the thickness of the elastic region composed
of cylindrical-hole and spherical-hole nuclei to the stellar radius is relatively larger than that considered in Fig. 3 as
shown in Table I, one can observe the i4-mode together with the i3-mode by introducing the elastic region composed
of cylindrical-hole and spherical-hole nuclei (see Sec. V for details).

The si-modes are also the eigenmodes excited due to the presence of elasticity. Unlike the ii-modes, the si-modes
are basically confined inside the elastic region. In Fig. 6, we show the amplitude of the eigenfunction, W and V , for
the s1-mode (s2-mode) in the top (bottom) panel. From this figure, one can see that W is continuous even at the
boundaries between the anelastic and elastic regions owing to the junction condition (see in Appendix C), while V
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of the top panel is shown in the bottom panel. One can observe that the amplitude of the i3-mode becomes dominant
inside the region composed of the cylindrical-hole and spherical-hole nuclei. We also find that only three interface
modes are excited in the “realistic” model, even though four interfaces exist in the “realistic” model, i.e., Sp/envelope,
Slab/Cy, CH/Slab, and core/SH. This may come from the fact that the region composed of cylindrical-hole and
spherical-hole nuclei is too narrow. In fact, if the elastic region becomes too narrow, the number of excited interface
modes can become less than the number of interfaces, as shown in Appendix D. Furthermore, if one considers the
neutron star model using the EOS with L = 42.6 MeV, where the ratio of the thickness of the elastic region composed
of cylindrical-hole and spherical-hole nuclei to the stellar radius is relatively larger than that considered in Fig. 3 as
shown in Table I, one can observe the i4-mode together with the i3-mode by introducing the elastic region composed
of cylindrical-hole and spherical-hole nuclei (see Sec. V for details).

The si-modes are also the eigenmodes excited due to the presence of elasticity. Unlike the ii-modes, the si-modes
are basically confined inside the elastic region. In Fig. 6, we show the amplitude of the eigenfunction, W and V , for
the s1-mode (s2-mode) in the top (bottom) panel. From this figure, one can see that W is continuous even at the
boundaries between the anelastic and elastic regions owing to the junction condition (see in Appendix C), while V

s-modes are confined only inside the elastic region
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FIG. 8. Eigenfrequencies of the ii-modes (top panels) and the si- and f -modes (bottom panels) are shown as a function of the
stellar compactness, M/R, for the neutron star models constructed using the EOSs with L = 42.6 (left panels) and 73.4 MeV
(right panels).

is discontinuous at the boundaries. In addition, one can observe that the nodal number in the eigenfunction of the
si-modes is equivalent to the subscript i. This behavior is easily observed in the amplitude of V , as shown in Fig. 7,
where we show the amplitude of V for the si-modes with i = 1− 5. So, the wavelength of the si-mode, λi, is roughly
estimated as

λi " 2∆R/i, (21)

where ∆R denotes the thickness of the elastic region, in which the shear modes are confined. Then, the corresponding
frequencies are also estimated as

fi ≈ vs/λi, (22)

where vs ≈ (µ/ε)1/2 denotes the shear velocity [36]. With this simple estimation, one may understand why the si-
mode frequencies excited in the “realistic” model are the same as those in the “Sp+Cy” model as discussed in Fig. 3.
That is, the si-mode frequencies excited in the phase of cylindrical-hole and spherical-hole nuclei must be much higher
(maybe more than 100 times higher) than the si-mode frequencies excited in the phase of spherical and cylindrical
nuclei, because ∆R for the phase of cylindrical-hole and spherical-hole nuclei, ∆RCHSH, is much thinner than ∆R for
the phase of spherical and cylindrical nuclei, ∆RSpCy, as shown in Table I, i.e., ∆RSpCy/∆RCHSH = 179.

V. DEPENDENCE ON THE NEUTRON STAR PROPERTIES

First, in Fig. 8, we show the eigenfrequencies of the i-, s-, and f -modes as a function of the stellar compactness for
the neutron star models constructed using the EOSs with L = 42.6 and 73.4 MeV. From this figure, one can observe
that the i-mode frequencies weakly depend on the stellar compactness, while the s-mode frequencies monotonically
increase with the stellar compactness. This is because the ratio of the thickness of the elastic region to the stellar
radius decreases as the stellar compactness increases [48], which leads to the increase of the s-mode frequencies as
discussed with Eqs. (21) and (22). In addition, as mentioned before, since the thickness of the elastic region composed
of the cylindrical-hole and spherical-hole nuclei for the neutron star model constructed with L = 42.6 MeV is relatively
larger than that with L = 73.4 MeV, one can observe the i4-mode together with i1-, i2-, and i3-modes in the stellar
model with L = 42.6 MeV.
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is discontinuous at the boundaries. In addition, one can observe that the nodal number in the eigenfunction of the
si-modes is equivalent to the subscript i. This behavior is easily observed in the amplitude of V , as shown in Fig. 7,
where we show the amplitude of V for the si-modes with i = 1− 5. So, the wavelength of the si-mode, λi, is roughly
estimated as

λi " 2∆R/i, (21)

where ∆R denotes the thickness of the elastic region, in which the shear modes are confined. Then, the corresponding
frequencies are also estimated as

fi ≈ vs/λi, (22)

where vs ≈ (µ/ε)1/2 denotes the shear velocity [36]. With this simple estimation, one may understand why the si-
mode frequencies excited in the “realistic” model are the same as those in the “Sp+Cy” model as discussed in Fig. 3.
That is, the si-mode frequencies excited in the phase of cylindrical-hole and spherical-hole nuclei must be much higher
(maybe more than 100 times higher) than the si-mode frequencies excited in the phase of spherical and cylindrical
nuclei, because ∆R for the phase of cylindrical-hole and spherical-hole nuclei, ∆RCHSH, is much thinner than ∆R for
the phase of spherical and cylindrical nuclei, ∆RSpCy, as shown in Table I, i.e., ∆RSpCy/∆RCHSH = 179.

V. DEPENDENCE ON THE NEUTRON STAR PROPERTIES

First, in Fig. 8, we show the eigenfrequencies of the i-, s-, and f -modes as a function of the stellar compactness for
the neutron star models constructed using the EOSs with L = 42.6 and 73.4 MeV. From this figure, one can observe
that the i-mode frequencies weakly depend on the stellar compactness, while the s-mode frequencies monotonically
increase with the stellar compactness. This is because the ratio of the thickness of the elastic region to the stellar
radius decreases as the stellar compactness increases [48], which leads to the increase of the s-mode frequencies as
discussed with Eqs. (21) and (22). In addition, as mentioned before, since the thickness of the elastic region composed
of the cylindrical-hole and spherical-hole nuclei for the neutron star model constructed with L = 42.6 MeV is relatively
larger than that with L = 73.4 MeV, one can observe the i4-mode together with i1-, i2-, and i3-modes in the stellar
model with L = 42.6 MeV.
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mode frequencies excited in the “realistic” model are the same as those in the “Sp+Cy” model as discussed in Fig. 3.
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(maybe more than 100 times higher) than the si-mode frequencies excited in the phase of spherical and cylindrical
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the phase of spherical and cylindrical nuclei, ∆RSpCy, as shown in Table I, i.e., ∆RSpCy/∆RCHSH = 179.
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the neutron star models constructed using the EOSs with L = 42.6 and 73.4 MeV. From this figure, one can observe
that the i-mode frequencies weakly depend on the stellar compactness, while the s-mode frequencies monotonically
increase with the stellar compactness. This is because the ratio of the thickness of the elastic region to the stellar
radius decreases as the stellar compactness increases [48], which leads to the increase of the s-mode frequencies as
discussed with Eqs. (21) and (22). In addition, as mentioned before, since the thickness of the elastic region composed
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Uncertainties in core EOS

• To see the dependence on the EOS stiffness in a higher-density region,
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M!) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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FIG. 9. The ii-mode frequencies multiplied by the stellar mass are shown as a function of the stellar compactness. The filled
and open marks denote the results for the neutron star model using the EOSs with L = 42.6 and 73.4 MeV, respectively. The
circles denote the results for the neutron star models with the original OI-EOSs, while the diamonds, squares, and triangles
denote the results for the neutron star models with the OI-EOS connected to the EOS characterized by α = 1/3, 0.6, and 1,
respectively. The solid lines denote the fitting lines using the formula given by Eq. (24).
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circles denote the results for the neutron star models with the original OI-EOSs, while the diamonds, squares, and triangles
denote the results for the neutron star models with the OI-EOS connected to the EOS characterized by α = 1/3, 0.6, and 1,
respectively. The solid lines denote the fitting lines using the formula given by Eq. (24).
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M!) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M!) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M!) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
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In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M!) = a0 + a1(x/0.1) + a2(x/0.1)
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as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as
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where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.
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We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
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