Crustal oscillations and resonance shattering

Hajime SOTANI (Kochi Univ.; RIKEN iTHEMS)

based on PRD **107**, 123025 (2023)

NS oscillation modes

- axial parity
 - spacetime (w-) modes
 - torsional (t-) modes
 - rotational (r-) modes
 - magnetic modes
- polar parity

Apr. 23-24, 2025

- fundamental (f-) modes
- pressure (p-) modes
- gravity (g-) modes
- spacetime (w-) modes
- shear (s-) modes
- interface (i-) modes
- inertial (i-) modes
- magnetic modes

under the angular transformation $(\theta \rightarrow \pi - \theta, \phi \rightarrow \pi + \phi),$ a spherical harmonic function with index ℓ transforms as $(-1)^{\ell+1}$: axial parity / $(-1)^{\ell}$: polar parity

QPOs at 22⁺³-2 Hz & 51⁺²-2 Hz were detected at the pre-merger stage preceding GRB211211 (Xiao+22) ↓ result of the resonant shattering (due to tidal interactions) of one of the stars' crust prior to coalescence, leading to the excitation of crustal oscillations (Tsang+12;13;Suvorov+22)?

we focus on

Resonant shattering

 Precursors 1–10 s prior to the main flare were detected with high significance for three SGRBs out of the 49 (Troja+10)

Trojar 🖓 🖓 rks to Neutron Stars: Insights from kHz gravitational waves@Koshiba Hall, Tokyo University

- crust thickness strongly depends on L and M/R
 - as L and M/R increase, crust thickness decreases

Stellar models

- To understand the dependence of eigenfrequencies excited in NSs on the presence of elasticity, we consider four models
 - $\textcircled{1}\$ NS composed of fully zero-elastic "fluid"
 - ② NS with elastic phase composed of spherical nuclei, "Sp"
 - ③ NS with elastic phase composed of spherical and cylindrical nuclei, "Sp+Cy"
 - ④ "realistic" NS model with elastic phase composed of Sp, Cy, CH, & SH nuclei
- First, we focus on a specific NS model with 1.4M $_{\odot}$ and 12.4 km constructed with L = 73.4 MeV

Behavior of eigenfrequencies

• Frequencies with $\Delta = 0$ correspond to the eigenfrequencies

From Quarks to Neutron Stars: Insights from kHz gravitational waves@Koshiba Hall, Tokyo University

Dependence on M/R

Uncertainties in core EOS

 To see the dependence on the EOS stiffness in a higher-density region, we adopt not only the original OI-EOSs but also the one-parameter EOS, such as

for a lower-density region ($\varepsilon \leq \varepsilon_t$): original OI-EOSs for a higher-density region ($\varepsilon \geq \varepsilon_t$): $p = \alpha(\varepsilon - \varepsilon_t) + p_t$.

- α is associated with the sound velocity as $c_s^2 = \alpha$
- we consider in the range of $1/3 \le \alpha \le 1$.

- we find two different types of fitting formulae for the i- and s-mode freq.
 - depend only on the crust stiffness (crust EOS)
- If one would simultaneously observe the i- and s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the terrestrial experiments.

Conclusion

- We carefully examine the s- and i-mode frequencies in realistic NS models
- s-mode frequencies are almost independent of the presence of CH and SH phases, at least up to a few kHz
- i-mode frequencies strongly depend on the presence of CH and SH phases
- We find the empirical relations for i- and s-mode frequencies
 - i-modes: $fM \; (kHz/M_{\odot}) = a_0 + a_1(x/0.1) + a_2(x/0.1)^2$
 - s-modes: fR (kHz km) = $b_0 + b_1(x/0.1)$ x = M/R

which depend only on the crust stiffness

• If one would simultaneously observe the i- and s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the terrestrial experiments.