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Background & Motivation
Neutrino flavor conversions are expected to play
a vital role in core-collapse supernovae and
neutron star mergers, impacting explosion
dynamics, nucleosynthesis, and the emitted neu-
trino signal.
Accurately modeling these effects requires solv-
ing the quantum kinetic equations (QKEs),
which are computationally demanding due
to their high dimensionality and nonlinear fla-
vor evolution.
To address this challenge, we propose a com-
putationally inexpensive method that pre-
dicts the late-time asymptotic states of fast
flavor conversions within the three-flavor
framework.
In contrast to simpler two-flavor systems, three-
flavor dynamics involve interacting coher-
ence sectors (νe–νµ, νe–ντ , νµ–ντ ), which ex-
hibit nonlinear competition. Our method
captures this interplay without solving full
QKEs.

Fast Flavor Conversions
In dense astrophysical environments, neutrinos
undergo collective flavor conversions driven
by nonlinear forward scattering. These are
governed by the quantum kinetic equation
(QKE):

(∂t + v · ∇) f = −i[H, f ],

where f is the neutrino density matrix and H
includes self-interaction potentials that depend
on the angular and spectral distributions of sur-
rounding neutrinos.
As the system evolves, flavor distributions
tend toward a quasi-steady (asymptotic)
state. This motivates a relaxation-type
approximation, modeled after the Bhatna-
gar–Gross–Krook (BGK) form [1]:

(∂t + v · ∇) f = −1

τ
(f − fa), (2)

where τ is an effective relaxation timescale and
fa is the asymptotic flavor distribution.
In the three-flavor framework, flavor evolu-
tion involves multiple coherence sectors that are
nonlinearly coupled. It makes direct estima-
tion of τ and fa challenging, as instabilities can
grow at different rates in different sectors.
Our method addresses this by modeling each
sector’s relaxation independently, while preserv-
ing their interaction through coupled evolution.

Subgrid BGK Scheme
To approximate the asymptotic state of fast
flavor conversions in the three-flavor system,
we extend the BGK formalism by introducing
sector-wise competition.
The time evolution of each flavor’s distribution
function is governed by:

dfe
dt

= −fe − fa,eµ
e

τeµ
− fe − fa,eτ

e

τeτ
,

dfµ
dt

= −
fµ − fa,eµ

µ

τeµ
−

fµ − fa,µτ
µ

τµτ
,

dfτ
dt

= −fτ − fa,eτ
τ

τeτ
− fτ − fa,µτ

τ

τµτ
.

(3)

Each term models relaxation toward a sector-
wise reference state fa,ij

i , weighted by a
timescale τij based on the strength of instability
between sectors.
Key features:

• Preserves nonlinear coupling via simul-
taneous sector evolution

• Reaches asymptotic state without solv-
ing full QKE

• Lightweight and compatible with classi-
cal transport codes

This formulation captures late-time flavor dy-
namics even when sectoral instabilities develop
at different rates.

Asymptotic Estimation
We estimate the asymptotic state fa,ij

i and re-
laxation rate τ−1

ij using the flavor potential:

Gν
ij ≡

√
2GF

(
(f̄i − f̄j)− (fi − fj)

)
.

The angular domain is split into two regions:

A =

∣∣∣∣∣
∫
Gν

ij<0

dΩGν
ij

∣∣∣∣∣ , B =

∫
Gν

ij>0

dΩGν
ij .

The relaxation rate is:

τ−1
ij =

2π√
AB

.

The asymptotic state is computed using a sur-
vival probability [2]:

fa,ij
i = Pijfi + (1− Pij)fj ,

fa,ij
j = (1− Pij)fi + Pijfj ,

with (for B ≥ A)

Pij =

{
1− A

2B if Gν
ij > 0,

1
2 if Gν

ij < 0,

and (for B < A)

Pij =

{
1− B

2A if Gν
ij < 0,

1
2 if Gν

ij > 0.
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Validation Against QKE Simulations
We validate the BGK approximation by comparing it to full QKE simulations in various settings.
We compare (1) the predicted asymptotic state of neutrino distribution functions and (2) temporal
characteristics and convergence of the first angular moment of neutrino distribution functions.
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Key observations:
• BGK tracks the asymptotic state and coherence decay well.
• Relaxation timescales and flavor mixing trends match QKE.

Implementation
Our BGK-based scheme is lightweight and easy to integrate into classical neutrino transport frame-
works, without requiring full QKE solutions.
The method can be implemented as a subgrid module:

• Step 1: Compute one timestep using classical neutrino transport
• Step 2: If a flavor instability is detected, solve Eq. (3) until convergence to estimate fa and τ

• Step 3: Replace the classical update with the relaxation step from Eq. (2)

This structure makes the BGK scheme well-suited for both moment-based and momentum-space
discretized transport codes in core-collapse supernova and neutron star merger simulations.


