Gravitational-wave predictions from multi-D modeling of core-collapse supernovae

Kei Kotake (Fukuoka University) with <u>Ko Nakamura (Fukuoka Univ.), Yohei Masada (Fukuoka Univ.)</u> Tomoya Takiwaki (NAOJ), Shota Shibagaki (Univ. Wroclaw), Kanji Mori (NAOJ.), Takami Kuroda (AEI) Jin Matsumoto (Fukuoka Univ.), Tobias Fischer (Univ. Wroclaw)

> "From Quarks to Neutron Stars: Insights from kHz Gravitational Waves" @ Univ. Tokyo, April 23-24, 2025

Gravitational Waves (GWs) from Stellar Collapse

What makes the SN-dynamics deviate from spherical symmetry is essential for the GW emission mechanism !

Gravitational Waves (GWs) from Stellar Collapse

Two candidate mechanisms of core-collapse supernovae (See reviews in Janka ('25), Yamada et al. ('25), Vartanyan and Burrows ('23), Mueller ('20), Kotake+ ('12))

	Neutrino	mechanism	MHD mechanism			
Progenitor	Non- or slow $(\Omega_0 < \sim 0.2)$	wing- rotating star l rad/s)	Rapidly rotation with strong B $(\Omega_0 > -\pi \text{ rad/s}, B_0 > -10^{11} \text{ G})$			
Key ingredients	✓ Turbulent Co (e.g., Vartanyan+ ✓ Precollapse (e.g., Mueller e ✓ Novel micro	onvection and SASI (22), Melson+('21)) Inhomogenities/structures t al. ('22), Yoshida et al. ('21)) physics:Bollig+(17), Fischer+('21)	 ✓ Field winding and the MRI (e.g., Obergaulinger & Aloy (2017), Rembiasz et al. (2016), Moesta et al. (2016), Masada + (2018)) ✓ Non-Axisymmetric instabilities (e.g., Takiwaki, et al. (2018), Summa et al. (2017)) 			
Progenitor fraction	Main playe	rs!	~<1% (Woosley & Heger (07), ApJ): (hypothetical link to magnetar, collapsar)			
Tpb=2 ms 5.00	9.00 13.0 17.0		20 M _{sun}			
18 M _{sun} of 87A progenitor: Nakamura et al. (2023)		17 M _{sun} from Takiwaki and KK (2018	3) Voltre 5, 5, 5, 75 5, 5, 75 5,			
		"neutrino-driven" there	"Standing-Accretion-Shock -Instability": SASI there!			

(e.g., Burrows et al. ('24), Bollig et al. ('21), Mezzacappa+ ('21), Vartanyan et al. (2022),O'Conner et al. ('22), Mueller ('22)

Generic GW signatures of neutrino-driven explosions

Waveform from Murphy et al. (2009) ApJ time after bounce [ms] 15 200 400 600 800 1000 1200 1400 15 M_@ Nonlinear SASI = 10 [1e-21] SASI plumes n,D [cm] 5 15 Explosion-(Prolate) Prompt convection 500km 0.0 0.6 0.8 1.0 0.4 0.2Time after bounce [s] (Later confirmed by B. Mueller et al. ('18), ApJ, Mezzacappa et al. (2023), PRD) 10 15 25 30 10 Entropy [k_R/baryon] Log(density [g/cc])

✓ <u>Three generic phases</u> in neutrino-driven models: "burst-type" GW 1. Prompt-convection phase : within ~50 ms post-bounce

- 2. Non-linear phase (Convection/SASI) : Downflows hit the PNS surface
- 3. Explosion phase (:Long-lasting signal, but terminates if BH forms

(Müller et al. (2020, ApJ), Cerda-Duran et al. (2013, ApJ), Kuroda et al. (2018))

Waveform from Nakamura et al. ('16) MNRAS

Waveforms have no template character: "stochastic" explosion processes!

How to detect GWs with no-template features...

✓ Excess power method: Flanagan & Hugh (1998)

⇒ Decompose data-stream into time-frequency domains
 ⇒ Search for "hot" regions with excess power in the spectrogram !

✓ GW spectrogram from Murphy et al. ('09) ApJ.

Simulated supernova waveform

Probable GW signal?

(With no template character...) Generic GW phases are in the spectrogram !
 Secular increase of the typical GW frequency (f_p) reflects the PNS evolution.
 On top of f_p, the high frequency component comes from strong downflows to PNS.
 <u>These qualitative features : Common to more recent 2D and 3D models.</u>

<u>GW Spectrograms from State-of-the-Art: "Ramp-up" is there!</u>

✓ 2D GR simulations with VEF (detailed) transport (Vertex-Coconuts code by MPA)

3D full GR simulations with M1 (approx.) transport: Kuroda et al. (2016,18,20)

<u>GW Spectrograms from State-of-the-Art: "Ramp-up" is there!</u>

<u>"PNS" asteroseismology : Linear analysis of the PNS oscillations</u>

 \bigstar Important lessons:

✓ A universal "relation" proposed; (see talk by Zhao!)

low modes of "f", " g_1 " insensitive to progenitor, EOS, and numerical details.

 \rightarrow Direct information to the PNS "M-R" relation! (Torres-Forne+2017, Sotani+2021).

✓ For the detection, "kHz" detectors crucially needed !

<u>GW Spectrograms from State-of-the-Art: "Ramp-up" is there!</u>

"PNS" asteroseismology : Linear analysis of the PNS oscillations

The waveforms
 "look" different !
 Excess in

☆ Important lessons:

✓ A universal "relation" proposed; (see talk by Zhao!) low modes of "f", " g_1 " insensitive to progenitor, EOS, and numerical details.

 \rightarrow Direct information to the PNS "M-R" relation! (Torres-Forne+2017, Sotani+2021).

✓ For the detection, "kHz" detectors crucially needed !

"Turbulence" the key for the neutrino-mechanism! "Pulsars": rotate and magnetized: Magnetohydrodynamics (MHD) is mandatory ! **"**High" numerical resolution required to capture "High" frequency GW !

"Eddy" simulations with the same grid setting; Matsumoto et al. (2020), ApJ

3rd order in time & 5th order (PPM5) in space : x3 expensive than HD!

The "devil" is in the details ...(of neutrino physics)

✓ Quantitative GW/v signal prediction, "updates" (MHD, v physics, GR...) mandatory!

More 3D CCSN modeling with MHD are now possible !!!

Nakamura, Takiwaki, KK (2024), MNRAS Matsumoto et al. (2023) $\sqrt{9-20}$ solar mass progenitors (Sukhbold et al. (2016), Initial B-field: 10¹⁰ G (uniform), Non-rotation)

✓ GW landscape from systematic 3D MHD modeling Nakamura, Takiwaki, KK in prep. (2022) MNRAS

The amplitudes become higher for models (with high progenitor mass) with progenitor's compactness (~M_{core}/R_{core})"
 (= abundant gravitational energy releasable) predominantly because of strong gravity.

✓ GW landscape from systematic 3D MHD modeling Takiwaki, KK in prep. (2022) MNRAS

✓ GW landscape from systematic 3D MHD modeling Takiwaki, KK in prep. (2022) MNRAS

✓ GW landscape from systematic 3D HD modeling covering a "long-term" evolution (~4 s)

- ✓ 21 models computed in 3D from 9 to 60 M_{sun} stars.
- High GW emitted energies for high progenitor compactness (consistent with ours!)
- \checkmark The longer, The bigger due to
 - 1. long-lasting mass accretion to the PNS
 - 2. GW from

anisotropic neutrino emission

CW landscape from systematic 3D HD modeling

GW landscan

 10^{-19}

10-20

 10^{-21}

 $\begin{bmatrix} 10^{-22} & 10^{-22} \\ \frac{2}{10} & 2H \end{bmatrix}$

 10^{-24}

10-25

10-26 100

✓ ET/CE

both n

Vlandscan		aLIGO Detection Ranges								
	Progen	itor Matt	ter Mat	tter Matter	Neutrino	Neutrino	Neutrino	Combined		
				ET Det	tection 1	Ranges				
The second second	18.5	108.96	153.99	133.38	232.81	1308.77	686.45	819.83		
A SAME AND A SAME	19	132.07	166.42	149.27	137.92	2070.83	1248.35	1397.62		
	19.56	195.89	265.83	231.85	241.62	2502.41	1278.68	1510.53		
	20	105.51	150.35	128.39	211.01	1371.91	767.43	895.82		
A A A A A A A A A A A A A A A A A A A	21.68	149.93	190.84	171.76	176.60	1905.45	1011.43	1183.19		
	23	85.30	116.51	101.27	178.57	2107.92	1114.24	1215.51		
	24	132.86	172.41	152.48	196.13	1668.61	874.15	1026.63		
	25	109.74	161.45	137.83	225.88	1260.74	742.87	880.70		
	40	215.27	258.24	237.30	247.51	3731.75	2092.88	2330.18		
X	60	133.47	161.82	147.17	143.61	2160.75	1280.57	1427.74		
Choi+2025. A	✓ Dete for L	ection VK, thi	horiz rougł	on (sett nout oui	ing a SNI ' Galaxy!	R ratio as	$\rho^2 = 4 \int_0^{\infty}$	$\int_{\infty}^{\infty} df \frac{ \tilde{h}(f) ^2}{S_n(f)}$		
	√ for F	T/CE.	"bey	rond" ne	eighborir	ng galaxie	S	- n(5)		
Total Spec GWs from v em	(e.g	. Andro	omed	da (765k	(pc)!)					
101	\rightarrow Fina	l word	ls "No	eed" lor	ng-term s	imulatior	is with N	1HD		
, J	x-x	, (12)	_ ^	10 ³ Hz		⁻ matter	' neut	rino		
CE (< 100Hz) and kHz detectors anis						anisotro (zero if s	otropic neutrino o if spherical)			

~ <u>|</u>

Impact of Stellar Rotation of SASI-modulated v and GW signals

Correlation of v and GW signals from a rapidly rotating 3D model

Gravitational waveform

Takiwaki, KK, Foglizzo, (2021), Shibagaki et al. (2023)

22

Correlation of v and GW signals from a rapidly rotating 3D model

Gravitational waveform

f_{neutrinc} 100 150 200 250 Frequency [Hz]

200Hz

- Peak frequency of the GW signals (f_{gw}) is
- twice of the neutrino modulation freq (f_{neutrino}) ! due quadrupole GW emis<u>sion</u>) Also the case for non-rotating progenitor, f_{neutrino, SASI}~80 Hz, QUIZ f_{gw}~80 of 160 H
- Coincident detection between GW and v : smoking gun signature of rapid core rotation!

Neutrino event rate (27 M_{sun} , Ω_0 = 2rad/s)

Takiwaki, KK, Foglizzo, (2021), Shibagaki et al. (2023)

Sector BH forming simulations of a 70 M_{sun} (M_{co} ~ 28.5 M_{sun})

Kuroda et al. MNRAS, 2018, 2022, and in prep

- ✓ **<u>Earliest BH formation</u>** after bounce (~300 ms postbouce) !
- Before the BH formation, <u>monotonic increase</u> of neutrino luminosity and rms energy. (consistent with 1D, e.g., Sumiyoshi+ (2006), Nakazato(+2008,2013), Fischer+ (2009), Huedepohl+(2016))
- Sudden disappearance of the GW and neutrino signals -> BH formation !

Sector BH forming simulations of a 70 M_{sun} (M_{CO} ~ 28.5 M_{sun}) Kuroda et al. MNRAS, 2018, 2022, and in prep

> Z70.0(LS220) 50083 1.5 $\nu_{\rm e}$ s_1) $bar - \nu$ لۍ (10⁵³ erg ν_{χ} 2 0.5 0 20 50 40 100 150 200 250 25 25 20 20 15 10 20 0km 15 10 5 20 40 150 n 50 100 200 250 300 T_{pb} [ms]

✓ **Earliest BH formation** after bounce (~300 ms postbouce) !

 Before the BH formation, <u>monotonic increase</u> of neutrino luminosity and rms energy. (consistent with 1D, e.g., Sumiyoshi+ (2006), Nakazato(+2008,2013), Fischer+ (2009), Huedepohl+(2016))
 Sudden disappearance of the GW and neutrino signals -> BH formation !

Probe into high-density EOS with "QCD" phase transition

If "first-order" phase transition to the quark-gluon phase takes place... then

✓ Original idea:
 Takahara & Sato (1988)
 Gentile et al. (1993)

Probe into high-density EOS with "QCD" phase transition

If "first-order" phase transition to the quark-gluon phase takes place... then

Full GR 2D simulation (Kuroda et al. 2022) including updated v opacities (Kotake + 2018, ApJ)

Probe into high-density EOS with "QCD" phase transition

If "first-order" phase transition to the quark-gluon phase takes place... then

Full GR 2D simulation (Kuroda et al. 2022) including updated v opacities (Kotake + 2018, ApJ)

 Depending on the progenitor mass and PT physics, the fate to neutron star, hybrid star (HS), black hole!
 If the PT transition is "cross-over", no "PT-induced" explosions obtained (e.g., Jakobus et al. (2022) using "CMF" EOS).

→ Probe into "Dense QCD" regime (almost unexplored!)

Probe into PT physics : Multi-messenger signals !

Kuroda et al. (2022), MNRAS, Jakobus et al. (2022), (2024) PRL

Probe into PT physics : Multi-messenger signals !

Kuroda et al. (2022), MNRAS, Jakobus et al. (2022), (2024) PRL

✓ Very strong and *high-freq*. (≥1kHz) GW emission obtained only from a *"baby"* hybrid star.
 ✓ The GW and v signals provide the secret to the birth history!

Probe into PT physics : Multi-messenger signals !

Kuroda et al. (2022), MNRAS, Jakobus et al. (2022), (2024) PRL

✓ Very strong and *high-freq*. (≥1kHz) GW emission obtained only from a *"baby"* hybrid star.
 ✓ The GW and v signals provide the secret to the birth history!

3D modeling on the verge of success and the MM prediction

- Systematic 3D MHD modeling 🖌 Fast-flavor conversion a new challenge ! with GW/v signal predictions (see paper by Ehring + 2023, Nagakura+2023) Upgrade of v and GW detector are in steady progress.
- targets of LVK throughout our 1 Galaxy, of CE/ET nearby Gal. (Detection of "kHz" GW new probe to PNS physics)
- Coincident analysis of GW and v, pivotal, providing the smoking gun of the engine! (✓ SASI-modulation, rotation leads to the "frequency doubling" between v and GW,
 - ✓ Dictate BH vs. NS formation.
- No SN fight (anymore)! **3D results from different** supernova teams asymptote.

✓ GW signals from 3D SN models (Hyper-K, Dune, LVK w. kHz extension!) **Detailed weak Interactions/ new physics** incl. axions, and sterile neutrinos? (see work by Mori+(2024), Lucente+(2021)) Multi-D MHD progenitor modeling and observation (binary evolution) (Mueller & Varma (2023), Smarrt (2022))

☆Signal prediction from Hypernovae!

(:3D-GR MHD code with neutrino transport) **Needed to understand long-duration GRBs** pair-instabiility supernova, SL-SNe, from first principles! (MM signals predictions almost unexplored!)

3D-MHD modeling of "Jets", BH/accretion-disk