Oscillation and deformation on neutron stars leading to GW detection

Yasufumi Kojima

From Quarks to Neutron Stars: Insights from kHz gravitational waves

23 - 24 April 2025 @ Tokyo

Constraints to EOS

Remarkable development

- Maximum mass
- GR red shift of line
- GR light bending(NICER)
- GW (tidal deformability)

Mass-radius diagram of NS Mass 3.0 Causality PSR J0030+0451 2.5 (Raaijmakers et al.) PSR J0740+6620 (Rilev et al.) 2.0 PSR J0030+045 (Demorest et al.) $(^{\odot}M)$ (Miller et a 1.5 GW170817 (Bausewein et al. 質量 GW170817 (LIGO collaboration) 1.0 — SLY230a APR PREX BL — QHC18 0.5CMF — OHC19-A DD2 FRG3f — OHC19-B - SKa — QHC19-C SLY9 ---- QHC19-D 0.0<u></u> 9 10 11 12 13 14 15 16 半径 (km) Radius Enoto & Yasutake (2021) Butsuri in Japanese

General consideration

For $f \sim \text{kHz}$ GW from NS

 $f^{-1} \sim \text{ms}$ dynamical timescale (<1ms) of NS Dynamical aspect of NS \Leftrightarrow Static star with M and R However, amplitude *h* is small (rare chance) in high *f* because $\Delta F \propto (fh)^2$

kHz GW is challenging issue, important information if detected Potential source <u>except for binary NS</u> in next GW astronomy

• Bursts

Oscillations in PNS / Glitches / Magnetar flares

• CGW

Deformation of (rapidly) rotating NS

f-mode oscillation of NS

- Almost volume-preserving Global oscillation of entire star
- Oscillation frequency

 $f \propto (GM/R^3)^{1/2} \propto \bar{\rho}^{1/2} \sim 1.5 - 3 \text{ kHz}$

• Damped by GW

 $\tau_{GW} \sim c^5 R^4 / (GM)^3 \sim 0.1 - 0.5 (< 1) sec$

→ Efficient source of GW

However, how is it excited? SN Glitch Flare

Relativistic, Massive, Compact

Various oscillations of PNS

Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several eigenfrequencies for the PNS with $\rho_s = 10^{11}$ g cm⁻³, where the circles, the diamonds, and the squares denote the *f*-, *p_i*-, and *g_i*-modes for *i* = 1 or 2. The source distance is assumed to be D = 10 kpc.

Sotani & Takiwaki (22)

Study including many physics

Oscillations are identified in numerical simulation models Sotani +(16,...) ; Muller+(13,..); Powell+(23,24,..);Morozova+(18,...) ; Torres-Forne +(18,...); Cusinato+(25);

(1D) 2D/3D, GR/Newton, neutrino transport, Stellar models,+ Rotation + magnetic field,

Typical values $E_{GW} \sim 10^{46} - 10^{47} \ll E_{ex} \sim 10^{51} erg$ $h_{GW} \sim 10^{-22}$ (d~10 kpc)

spectrogram

Powell & Muller (24) 15M_sun

Broad width by mode splitting Nonrotating -> rigid rotation with Ω $f_0 \rightarrow f \approx f_0 [1 + m(\Omega/\Omega_K) \times c]$ $m = -l, ... + l \quad (2l + 1)$ $c \approx 0.4 - 0.7 \quad (e.g. YK(93), Doneva+(13))$ $\Omega/\Omega_K \sim 0.05 \quad T \sim 10^{50} < E_{ex}; T/W < 0.01$

spectrogram

Powell & Muller (24) 15M_sun

With magnetic field Complicated behavior Spin down by mag. Torque Initial ang. Mom. $J_0 = 10^{48} gcm^2 s^{-1} \rightarrow 4 - 5 \times 10^{47}$

Extreme cases are interesting, but need more studies

M-R of NS

Lattimer& Prakash (2016) Physics Reports

Gravitational bound object

or

YK& Sakata (2002)PTP

Different compact object detected by GW

 Direct evidence: Oscillation frequency is not explained by any NS models unclear excitation mechanism with large amplitude
Indirect evidence: Freq. distribution according to stellar mass because
f depends on mass

Scenario in Wilson & Ho(2024)PRD "f-mode oscillation induced by glitch $E_{osc} = E_{glit} = I\Omega\Delta\Omega \sim 10^{40} erg$ is damped with $\tau_{GW} \sim 0.1 sec$ " $h_0 \sim 10^{-23}$ @d=1kpc; SNR $\sim h_0 \sqrt{\tau_{GW}/2S_h}$

Synthesized population from known pulsar and glitches catalogues

Gravitational waves from glitch-induced f -mode oscillations in quark and neutron stars

Wilson & Ho(2024)PRD: Synthesized population for NS (#10k) and QS(#10k) from known pulsars and glitches catalogues

FIG. 5. Normalized distributions of GW frequency $\nu_{\rm gw}$ and damping time $\tau_{\rm gw}$ using the ZL QS $c_{\rm s}^2 = 1/3$ EOS and APR NS EOS and Population 1 (known pulsars and glitches and assuming a Gaussian mass distribution).

FIG. 6. GW strain $(h_0\sqrt{\tau_{gw}})$ from glitch-induced f modes, calculated using the ZL QS $c_s^2 = 1/3$ EOS and APR NS EOS and Population 1 (known pulsars and glitches and assuming a Gaussian mass distribution). Solid lines indicate current and future GW detector sensitivities.

Gravitational waves from glitch-induced f -mode oscillations in quark and neutron stars

Frequency hardly depends on mass in QS models

FIG. 8. Normalized distributions of GW frequency ν_{gw} and damping time τ_{gw} using the ZL QS $c_s^2 = 1/2$ EOS and LS220 NS EOS and Population 1 (known pulsars and glitches and assuming a Gaussian mass distribution).

FIG. 9. GW strain $(h_0\sqrt{\tau_{gW}})$ from glitch-induced *f* modes, calculated using the ZL QS $c_s^2 = 1/2$ EOS and LS220 NS EOS and Population 1 (known pulsars and glitches and assuming a Gaussian mass distribution). Solid lines indicate current and future GW detector sensitivities.

Different compact object detected by GW

 Direct evidence: Oscillation frequency is not explained by any NS models unclear excitation mechanism with large amplitude
Indirect evidence: Freq. distribution according to stellar mass because

f depends on mass

Scenario in Wilson & Ho(2024)PRD "f-mode oscillation induced by glitch $E_{osc} = E_{glit} = I\Omega\Delta\Omega \sim 10^{40} erg$ is damped with $\tau_{GW} \sim 0.1 sec$ "

$$h_0 \sim 10^{-23}$$
 @d=1kpc; SNR $\sim h_0 \sqrt{\tau_{GW}/2S_h}$

Synthesized population from known pulsar and glitches catalogues

Bimodal distribution -> Another type of compact star

However, optimistic estimate

Magnetar flare

Energetic event $E_{EM} \sim 10^{46} erg$ e.g., Giant flare in 2004 SGR1806-20 Magnetic energy $E_{gr} \approx 10^{53}$, $E_{mag} \approx 10^{48}$, $E_{rot} \approx 10^{45}$, $E_{th} \approx 10^{43} erg$, ...

✓ QPO's observed in 20-100 Hz kHz (unclear ?)

Peaks at 20, 30, 95Hz during 200-300s

Exploring flare

Torsional shear oscillation in solid crust ($\Delta r/R < 0.1$)

<-> Constrain to NS model <-> K,L parameters of nuclear matter

 $(\Delta r/R \text{ decreases with increase of } M/R$, L) (Rev. by Sotani 24)

Other modes e.g., f-modes excited? Energy of f-mode oscillation is $\sim 10^{-6} E_{mag} \sim 10^{40}$ erg , when flare is induced by release of internal magnetic energy (Levin+ 11)

Different origin? Another scenario?

→ Solved only by observation (GW observation is important at the flare) Ref $\Delta E \leq 7.7 \times 10^{46} erg$; $h_{rms} \leq 4.5 \times 10^{-22} Hz^{-1/2}$, Giant Flare 04

Non-axisymmetric deformation of rotating NS

GW source

$$h = (16G\pi^2/c^4) I_{zz} \varepsilon f_{rot}^2 d^{-1}$$

Spin-down limit

 $\dot{E}_{GW} (\propto h^2, \epsilon^2) \leq I\Omega\dot{\Omega}$ Upper limit by GW (no signal)

Current upper limit by GW

 $h = 8 \times 10^{-26} (\varepsilon/10^{-6}) (f/kHz)^2 (d/10kpc)^{-1}$

Many pulsars below spin-down limit

 $h_{sd} = 3 \times 10^{-27} ((\dot{f}/f)_{-15})^{1/2} (d/10 kpc)^{-1}$

LVK O4a 2501.01495

Small spin-down limit

Non-axisymmetric deformation of rotating NS

GW source

$$h = (16G\pi^2/c^4) I_{zz} \varepsilon f_{rot}^2 d^{-1}$$

Spin-down limit

$$\dot{E}_{GW} (\propto h^2 , \ \epsilon^2) \ \leq I \Omega \dot{\Omega}$$

<u>Theoretical models</u> to determine *ɛ*

Upper limit by GW (no signal)

Non-isotropic stress is necessary

- Magnetic deformation/ thermal mountain
- Deformation is estimated by energy ratio to gravity

$$\begin{split} \varepsilon \sim E_{mag} / E_{gr} \sim & 10^{-6} \times \bar{B}_{15}^{-2} \\ & \sim & 10^{-5} \times (H_{cr,16} B_{s15}) \\ & \varepsilon \approx & 10^{-7} B_{s,14}^2 \end{split}$$

Magnetic deformation

Type-II superconductors

Sustained by solid crust

• Realistic formation (recent theoretical model)

Deformation of magnetars NS with intense mag. $(> 10^{14} G)$

Precession observed in seven magnetars (Makishima + 2014,...)

4U 0142 + 61,1E 1841-045, 1E 1547-5408,SGR 1900 + 14,SGR 1806 – 20,SGR 0501+4516,RXJ 1708-4009 Universal

Prolate shape $\epsilon = (I_1 - I_3)/I_3 \sim 10^{-4}$

SGR 1900+14

SGR 1806-20

1E 1547.0-5408

 \Leftrightarrow toroidal field (~10¹⁶ G)

or unknown mechanism to produce the shape

2016

2016

1993

Source	Year	P0 (s)	T _{ppm} (ks)	$P_0/T_{\rm ppm}$ (10 ⁻⁴)	B _t ^{'a} (10 ¹⁶ G)	$B_{\rm d}{}^{b}$ (10 ¹⁴ G)	B'_t/B_d
4U 0142+61	2009	8.689	55 ± 4	1.6	1.3	1.3	100
SGR 0501+4516	2008	5.762	$16.4^{+0.6}_{-0.5}$	3.5	1.9	1.9	100
RXJ 1708-4009	2010	11.006	46.5 ± 3.1	2.4	1.5	4.7	32
1E 1841-045	2006	11.783	$23.4^{+0.5}_{-0.7}$	5.0	2.2	7.0	31

 40.5 ± 0.8

 36.0 ± 2.3

 16.435 ± 0.024

Table 3. Summary of PPM measurements and estimates of Bt.

5.227

2.087

7.469

Makishima + (2024)

1.3

0.58

4.5

1.1

0.76

2.1

7.0

3.2

20

 τ_c^c

(kyr)

68

15

9.0

4.6

0.90

0.69

0.24

16

24

11

Ref.d

[1]

[2]

[2]

[2]

[1]

[1]

[1]

Detection in space DECIGO, BBO

Figure 1. There are 273+27 (see previous table) coloured markers (stars and crosses), corresponding to sources from the considered samples, detectable by various detectors. The grey triangles show the spin-down ellipticity for every source. The horizontal dotted line is the ellipticity inferred by Makishima et al. (2014) for the magnetar 4U 0142+61. The dash-dotted lines indicate characteristic ages assuming only gravitational wave braking.

GWs from magnetars with a big deformation are expected, but the frequency is low

Pagliaro+ 2503.17087

Evolution of newly borne NS Hypothetical milli sec. NS

 $f_{spin} \sim kHz \& \varepsilon \sim 10^{-4}$

Spin evolution

Angular momentum loss by GW and magnetic dipole $I\Omega\dot{\Omega} = -\beta\Omega^4 - \gamma\Omega^6$

Magnetic dipole $\beta = \frac{1}{6c^3}B^2 R^6$; Quadrupole GW radiation $\gamma = \frac{32G}{6c^5}\epsilon^2 I^2$ Parameters *B*, ϵ and initial value $\Omega_0 = 2\pi f_0$ (max. rotation)

Classical paper;

Model of Crab PSR(born in 1054, discovered in 1968, Gunn & Ostriker 1969)

 $B = 5 \times 10^{12} G$ and $\varepsilon = 4 \times 10^{-4}$

Large number ε might inspire resonance-type experiment in the past, but was not correct; current upper limit is $\varepsilon < 6 \times 10^{-6}$ O4 (2025)

Early phase (< a few days)

Within three days, frequency decreases to half either $B > 9 \times 10^{13} G$ or $\varepsilon > 4 \times 10^{-4}$ $h_0 \sqrt{\tau} \sim 10^{-22} Hz^{-1/2}$ d=10Mpc Or no signal for magnetar with small ε

Origin of B and ε

When, How much?

Summary

Oscillations associated with CCSN, glitches, magnetar flares and rotating NS with nonaxisymmetric deformation are discussed

Many unsolved issues

kHz GW is challenging issue, and provides valuable information