Advanced techniques to further improve the kHz sensitivity

Contents of talk

- We might need a sensitivity better than 10⁻²⁴ (1/rtHz) at 3-4kHz.
- Is there a hope to realize such a good sensitivity?
- If there is, how feasible is the technique?

Quantum noise

High-freq sensitivity is limited by quantum noise of light

Quantum filters

Quantum noise changes with a filter in the Signal-Recycling cavity

(current detectors) LIGO/Virgo: none KAGRA: microscopic detune

(HF detectors)

- Delay Line (Long-SRC)
- Sloshing cavity (speed-meter)
- Non-linear crystal
- Microcavity

4

Active filters

Microscopic detune and delay line

10

	detune	delay line	
arm power	5MW	5MW	
squeezing	0dB	0dB/10dB	
SRC length	66.6m	66.6m	
SRC detune	3.5 deg	0 deg	
SRC loss	2000ppm	2000ppm	
PD loss	10%	10%	
arm loss	100ppm	100ppm	

Delay line + squeezing is better, but the gain is limited by optical loss in the recycling cavity.

Frequency (Hz)

 10^{3}

 10^{2}

SRC=Signal Recycling Cavity, PD=Photo Detector

5

10⁴

10⁻²¹

[Purdue+Chen 2002] [Danilishin 2019]

	SM (LF)	SM (3kHz)
arm power	0.5MW	0.5MW
squeezing	0dB	0dB
sloshing length	3km	3km
coupler transmission	14%	0.05%

Looks promising, but maybe this is in principle the same as the long SRC.

Optical losses are not included in the calculation.

Parametric amplifier

[Somiva 2023]

arm power	0.3MW
mass	0.5kg
amplifier	0dB, 10dB, 20dB, 50dB
squeezing	0dB
SRC loss	1000ppm

OPA=Optical Parametric Amplifier

Using an external energy source, a good HF sensitivity can be achieved; it is limited by internal loss.

Ponderomotive amplifier

[Somiya+Chen 2010]

arm power	1kW/100W
mass	40kg/1g
coupler	80%
detune	1.5rad

RP=Radiation Pressure

Broadband amplification is possible below the optical spring frequency of the small interferometer.

White light cavity

arm power	~1MW
mass	40kg
arm length	4km
small mass	0.1mg
filter power	100W

PRM=Power Recycling Mirror SRM=Signal Recycling Mirror

1e-24 (1/rtHz) can be realized in broad band but the requirement on microcavity is tough.

L-shape detector

Check out Akutsu's

poster about a

related work.

arm power	1.5MW
arm length	25km
ITM trans	1.4%
SEM trans	6%

SEM=Signal Extraction Mirror (~SRM)

The dip frequency is determined by the arm length ($25km \rightarrow 3kHz$). Loss is reduced at the frequency. ¹⁰

Universal Interferometer

PHYSICAL REVIEW X 15, 021012 (2025)

(c) Postmerger

Digital Discovery of Interferometric Gravitational Wave Detectors

Mario Krenn,^{1,*,†} Yehonathan Drori,^{2,*,‡} and Rana X Adhikari^{©2,§} ¹Max Planck Institute for the Science of Light, Erlangen, Germany ²LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA

(Received 5 May 2024; revised 24 October 2024; accepted 21 February 2025; published 11 April 2025)

AI picked the configuration.

[Krenn 2025]

Feasibility

- Beam size on mirrors is ~3cm, while that in a filter is ~100um.
- Junk light in the recycling cavity may cause scatter light.

New scheme with entanglement

Simple example: squeeze rotation

[Ma 2017]

Quantum teleportation

(1) X is 12:00, Y is 3:00, and S is 1:00 but no one knows

(2) We know "Y is 3 hours earlier than X"

(3) Alice's measurement tells "S is 1 hour earlier than X"

(4) Bob delays Y by 3-1=2 hours, then Y becomes S

Double squeeze rotation with teleportation

Alice's measurement tells S is

- (1) 1 hour earlier than X (f<30Hz)
- (2) 2 hours earlier than X (30Hz<f<1kHz)

(3) 3 hours earlier than X (1kHz<f)

Y becomes frequency-dependent squeezing¹⁶

Quantum-teleportation speed meter

This is one example that a configuration with a quantum filter can be realized with the teleportation scheme.

Summary

- There are variety of configurations that are about to reach 1e-24 at 3kHz.
- For some configurations, optical losses of the signal recycling cavity limit the sensitivity; there is an idea to circumvent this problem but with the 25km baseline.
- Implementation of quantum filters into a large scale interferometer can be an issue. Teleportation scheme and entanglement scheme may be useful.