## **Optical and infrared observations of kilonovae**

## Masaomi Tanaka (Tohoku University)



(C) Tohoku University



# Optical and infrared observations of kilonovae

Neutron star merger and kilonova
 Toward optical-infrared observations
 Localization
 Alert latency



## Multi-messenger from neutron star merger



#### Gravitational wave (GW)

### Relativistic jet => gamma-ray burst (gamma)

NS or BH

mass ejection + r-process => "kilonova" (optical, infrared)

#### Electromagnetic (EM) wave



## NS merger => dynamical mass ejection (< 0.1 sec) => "wind" from disk (~ 1 sec) + relativistic jets (=> gamma-ray burst)

Time: 7.52 ms

Kiuchi+23



Density







## Rapid neutron capture nucleosynthesis (r-process)



#### (C) Nobuya Nishimura





Goriely et al. 2011, Korobkin et al. 2012, Bauswein et al. 2013, Wanajo et al. 2014, ...



## Radioactive decays => Kilonova (EM signal)

 $^{125}$  Sn

 $^{127}\,\mathrm{Sb}$ 

 $^{128}\,\mathrm{Sb}$ 

 $^{131}$  I

 $^{132}$  I

 $^{140}$ La

 $10^{2}$ 

Metgzer+10, Lippuner+15, Wanajo18, ...



<sup>6</sup> Po

<sup>7</sup> At <sup>1</sup> Fr

#### **Optical + infrared** photons

Gamma-rays  $\beta/\alpha$  particles



hscMap

## Search for EM (optical) counterpart

## Neutron star merger => r-process nucleosynthesis

Movie: Utsumi, MT+17, Tominaga, MT+18

背景の天の川:ESO/S.Brunier





#### Domoto, MT+22 MT+23, Domoto+23 Rahmouni+25

| 1<br>H              |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|---------------------|---------------------|----------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------|----------------------|----------------------|---------------------|----------------------|-------------------|
| <sup>3</sup><br>Li  | <sup>4</sup><br>Be  |          |                      |                      |                      |                      |                      |                      |                     |                     |                      | 5<br><b>B</b>        | <sup>6</sup><br>C   | 7<br>N               |                   |
| Na                  | <sup>12</sup><br>Mg |          |                      |                      |                      |                      |                      |                      |                     |                     |                      | 13<br><b>A</b>       | <sup>14</sup><br>Si | 15<br><b>P</b>       |                   |
| 19<br><b>K</b>      | <sup>20</sup><br>Ca | 21<br>Sc | 22<br><b>Ti</b>      | 23<br>V              | Cr                   | <sup>25</sup><br>Mn  | <sup>26</sup><br>Fe  | 27<br>C0             | 28<br>Ni            | Cu                  | <sup>30</sup><br>Zn  | Ga                   | <sup>32</sup><br>Ge | <sup>33</sup><br>As  | <sup>3</sup><br>S |
| <sup>37</sup><br>Rb | 38<br>Sr            | 39<br>Y  | <sup>40</sup><br>Zr  | <sup>41</sup><br>Nb  | 42<br><b>Mo</b>      | 43<br><b>TC</b>      | Ru                   | <sup>45</sup><br>Rh  | <sup>46</sup><br>Pd | A7<br>Ag            | 48<br>Cd             | 49<br><b>In</b>      | <sup>50</sup><br>Sn | Sb                   | 5<br>T            |
| 55<br>CS            | <sup>56</sup><br>Ba |          | 72<br><b>Hf</b>      | 73<br><b>Ta</b>      | 74<br>W              | <sup>75</sup><br>Re  | 76<br>OS             | 77<br><b>Ir</b>      | 78<br><b>Pt</b>     | <sup>79</sup><br>Au | <sup>80</sup><br>Hg  | 81<br><b>T</b> I     | <sup>82</sup><br>Pb | <sup>83</sup><br>Bi  | 8<br>P            |
| <sup>87</sup><br>Fr | <sup>88</sup><br>Ra |          | <sup>104</sup><br>Rf | <sup>105</sup><br>Db | <sup>106</sup><br>Sg | <sup>107</sup><br>Bh | <sup>108</sup><br>HS | <sup>109</sup><br>Mt | 110<br>DS           | Rg                  | <sup>112</sup><br>Cn | <sup>113</sup><br>Nh | 114<br><b>FI</b>    | <sup>115</sup><br>Mc |                   |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|                     |                     |          | <sup>57</sup><br>La  | 58<br>Ce             | 59<br><b>Pr</b>      | <sup>60</sup><br>Nd  | Pm                   | <sup>62</sup><br>Sm  | <sup>63</sup><br>Eu | G4<br>Gd            | <sup>65</sup><br>Tb  | <sup>66</sup><br>Dy  | 67<br><b>HO</b>     | <sup>68</sup><br>Er  | 6<br>Ti           |
|                     |                     |          | <sup>89</sup><br>Ac  | <sup>90</sup><br>Th  | <sup>91</sup><br>Pa  | 92<br>U              | <sup>93</sup><br>Np  | 94<br>Pu             | <sup>95</sup><br>Am | 96<br>Cm            | <sup>97</sup><br>Bk  | 98<br>Cf             | 99<br>Es            | <sup>100</sup><br>Fm | I<br>M            |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |
|                     |                     |          |                      |                      |                      |                      |                      |                      |                     |                     |                      |                      |                     |                      |                   |





## **Power of multi-messenger astronomy**



### **Origin of elements**

Cosmology

**Fundamental** physics



Nature of merging objects

Nature of merging objects

Luminosity distance

#### EM

#### Gamma-ray burst

Kilonova

Redshift

Speed of GW

Speed of light

(C) Tohoku University



## **GW190425: 2nd NS merger event**

#### Total NS mass ~ 3.4 Msun



# **Diversity in neutron star masses** => diversity in mass ejection, r-process, and kilonova

#### Abbott+2020



#### ~10,000 deg2



## **Diversity in NS merger and kilonova**



#### Kawaguchi, Shibata, MT 2020

Corresponding model

Long-lived NS

**NS => BH** (GW170817)

**Prompt collapse to BH** (GW190425)



## **Diversity in NS merger and kilonova**



#### Kawaguchi, Shibata, MT 2020

Corresponding model

Long-lived NS

**NS => BH** (GW170817)

### **Prompt collapse to BH** (GW190425)

**Bright only for** low-mass or high-spin BH



## Impact to the nucleosynthesis

#### Hypermassive NS τ ~ 10 msec



### Long-lived NS (> 10 sec)



Fujibayashi+23





# Optical and infrared observations of kilonovae

Neutron star merger and kilonova
 Toward optical-infrared observations
 Localization
 Alert latency





## Challenges in optical+infrared observations of NS mergers

Further events are fainter => Bigger telescope

### GW170817 (40 Mpc)





## Wide-field optical telescopes

#### **1m telescope**







Wider field of view More telescopes

#### see Niino-san's talk

### 4m telescope

#### (C) DOE/FNAL/DECam/R. Hahn/ CTIO/NOIRLab/NSF/AURA

#### 8m telescope



#### **Better sensitivity**





## Sensitivity vs field of view



#### Larger optical telescopes tend to have a smaller field of view



## 40 Mpc (GW170817)







## **100 Mpc**

#### Imaging

#### 1m telescope

#### 4m telescope



8m telescope



2 mag fainter than GW170817 (x 1/6)







#### Imaging

#### **1m telescope**

#### 4m telescope



8m telescope

#### 3 mag fainter than GW170817 (x 1/15)







#### Imaging

#### **1m telescope**

#### 4m telescope



8m telescope

#### 3.5 mag fainter than GW170817 (x 1/25)



![](_page_23_Picture_10.jpeg)

## 400 Mpc

#### Imaging

#### **1m telescope**

#### 4m telescope

![](_page_24_Picture_5.jpeg)

8m telescope

![](_page_24_Picture_8.jpeg)

#### 5 mag fainter than GW170817 (x 1/100)

![](_page_24_Figure_10.jpeg)

![](_page_24_Picture_11.jpeg)

## Survey area vs distance

![](_page_25_Figure_1.jpeg)

#### <u>Assumption</u> Survey area = 100 x FOV Distance: GW170817 is detectable at 2 day

![](_page_25_Picture_3.jpeg)

## Survey area vs distance

![](_page_26_Figure_1.jpeg)

#### <u>Assumption</u>: ΔΩ ~ (S/N)-2 ~ d<sup>2</sup> LIGO: 1000 deg2 at 150 Mpc LIGO+Virgo: 30 deg2 at 40 Mp (GW170817)

![](_page_26_Picture_3.jpeg)

### Survey area vs distance

![](_page_27_Figure_1.jpeg)

#### Thanks to Michimura-san

![](_page_27_Picture_3.jpeg)

## IF we are targeting the event at < 15

with 1m class te Curren (ex. G) Joint locanzation / h LlGo, Virgo, KAG U 1-10 deg<sup>2</sup> < FOV of the optical telescop One-pointing will find EM counterpart (no more "search") Low event rate... 

|                             | X                                                                 | KAGRA                                                                                  | A# (LIGO O6<br>upgrade)               | LF2019                 | LF2024                | BB2019                | BB2024                | HF2019                | HF2024                | HF3k                  |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| BBH / BNS<br>ranges (SNR>8) | 100M <sub>☉</sub>                                                 | 353 Mpc                                                                                | 4927 Mpc                              | 2019 Mpc               | 3787 Mpc              | 306 Mpc               | 2154 Mpc              | 112 Mpc               | 200 Mpc               | 277 Mpc               |
|                             | - 100M <sub>☉</sub> -<br>30M <sub>☉</sub> -<br>- 30M <sub>☉</sub> | 1095 Mpc                                                                               | 6144 Mpc                              | 1088 Mpc               | 2382 Mpc              | 842 Mpc               | 4229 Mpc              | 270 Mpc               | 407 Mpc               | 552 Mpc               |
|                             | $1.4M_{\odot}$<br>- 1.4M $_{\odot}$                               | 153 Mpc                                                                                | 670 Mpc                               | 85 Mpc                 | 196 Mpc               | 178 Mpc               | 537 Mpc               | 155 Mpc               | 133 Mpc               | 104 Mpc               |
| BNS s<br>locali             | sky<br>zation ※                                                   | $\begin{array}{c} 10.64 \ \text{deg}^2 \\ \rightarrow 1.40 \ \text{deg}^2 \end{array}$ | <sup>2</sup> (HL-only)<br>g² (with K) | 10.28 deg <sup>2</sup> | 2.65 deg <sup>2</sup> | 0.77 deg <sup>2</sup> | 0.42 deg <sup>2</sup> | 0.57 deg <sup>2</sup> | 0.61 deg <sup>2</sup> | 0.93 deg <sup>2</sup> |

![](_page_28_Figure_3.jpeg)

#### EM counterpart

#### Table courtesy of Michimura-san

120 Mpc

![](_page_28_Picture_8.jpeg)

## IF the majority of BNS events are at > 150 Mpc...

- Optical follow-up requires a relatively deep observations (deep survey for > a few 1000 deg<sup>2</sup> is challenging)
- Follow-up will be feasible with upcoming GW observing run (05-06)
- Further improvement in the localization (w/ Virgo, KAGRA) enhances the chance of multi-messenger observations
- Sensitivity is the most important (contributing to the event at > 150 Mpc)

![](_page_29_Picture_6.jpeg)

## "Common sense" before 2017...

#### 6.1. Follow-up Observations of EM Counterparts

In this section, we discuss the detectability of UVOIR emission from NS merger ejecta. Figure 8 shows the expected observed light curves for an NS merger event at 200 Mpc. The model NSM-all (black) and four realistic models (red and blue) are shown. Note that all the magnitudes in Figure 8 are given in the AB system for ease of comparison with different survey projects. The horizontal lines show  $5\sigma$  limiting magnitudes for different sizes of telescopes assuming 10 minute exposure times.

#### MT & Hotokezaka 13

![](_page_30_Figure_4.jpeg)

![](_page_30_Picture_5.jpeg)

# Optical and infrared observations of kilonovae

Neutron star merger and kilonova
 Toward optical-infrared observations
 Localization
 Alert latency

![](_page_31_Picture_2.jpeg)

## Timeline

![](_page_32_Figure_1.jpeg)

#### GRB

see Serino-san's talk

https://emfollow.docs.ligo.org/userguide/analysis/index.html#alert-timeline

#### Time relative to gravitational-wave merger

| limina<br>ent | ıry                   |                        |      |                      |  |  |  |
|---------------|-----------------------|------------------------|------|----------------------|--|--|--|
| 2nd<br>Aler   | Preliminary<br>t Sent |                        |      |                      |  |  |  |
|               |                       | Initial Aler           | t or |                      |  |  |  |
|               | Classification        | <b>Retraction Sent</b> |      |                      |  |  |  |
| ramete        | er Estimation         | Classificat            | tion | Update<br>Alert Sent |  |  |  |
| ute           | 1 hour                | 1 day                  | 1 w  | eek                  |  |  |  |
|               |                       |                        |      |                      |  |  |  |
|               | Kilo                  | nova                   |      |                      |  |  |  |

![](_page_32_Picture_7.jpeg)

## Early kilonova emission

![](_page_33_Figure_1.jpeg)

#### Additional emission from jet-cocoon (mainly in UV)

![](_page_33_Figure_3.jpeg)

#### Hamidani+23,24

![](_page_33_Picture_6.jpeg)

## Probe of the central engine

![](_page_34_Figure_1.jpeg)

#### **Future wide-field UV satellites** (PETREL, ULTRASAT, UVEX, ...)

Hamidani+24

# (~ practical observational timescale: communication, pointing, exposure, ...)

![](_page_34_Picture_6.jpeg)

## Important information for follow-up observations

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

https://emfollow.docs.ligo.org/userguide/analysis/index.html#alert-timeline

### Retraction: as early as possible... (< 1 hr)

| vitational-wave merger   |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |
|--------------------------|-------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|                          |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |
| liminary<br>ent          |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |
| 2nd Prelin<br>Alert Sent | ninary<br>: |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |
| Classifi                 | cation      | al Alert<br>action S | or<br>Sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |  |  |
| rameter Estin            | nation Cla  | assificatio          | Dia Dia Con Dia Con Dia Con Dia Con Dia Contractor Cont | ent |  |  |  |
| ute 1 h                  | our         | 1 day 🛛              | 1 week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |  |

#### Updated sky map: as early as possible... (< 1hr)

![](_page_35_Picture_7.jpeg)

## Importance of rapid source classification/localization

#### **Preliminary alert**

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

118 deg<sup>2</sup> (!) observations
with Subaru/HSC
1.7 hours after the alert
(S190510g, Ohgami+21)

Conservative classification/localization including systematics would be appreciated

#### Updated alert (1 day later...)

![](_page_36_Figure_7.jpeg)

![](_page_36_Picture_8.jpeg)

## Summary

- Neutron star mergers and kilonova
  - Production site of heavy elements
  - Diversity in nucleosynthesis depending on merging system
- Localization
  - BNS events at < 150 Mpc are already feasible (but event rate is not high) BNS events at > 150 Mpc require relatively deep observations
- < a few x 100 deg<sup>2</sup> localization at > 150 Mpc (05-06)
- **Alert latency** 
  - Hour timescale emission can be a probe of central engine
  - Accurate (and conservative) classification and sky map within 1 hr are appreciated

![](_page_37_Picture_11.jpeg)