Multi-messenger astronomy with high energy neutrinos

Nobuhiro Shimizu (Chiba University) ICEHAP – international center for Hadron Astrophysics

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

High energy messengers

 φ 10 GeV· cm⁻² · s⁻¹ · sr⁻¹

 γ -rays, neutrinos, and cosmic ray sources could be common.

(proton etc.)

- Cosmic rays are deflected by B-field
- Neutrinos
- no absorption in the propagation
- no deflection in magnetic field

Neutrinos are smoking gun of the high energy phenomena of universe.

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

Earth

IceCube experiment

- 5160 optical sensors in 1 km³ regions
- The world largest Cherenkov detector
- Full operation started from 2011

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

Neutrino event morphology

cascade	Track
$\boldsymbol{\nu_e} + N \to e + X$	$\boldsymbol{\nu_{\mu}} + N \to \mu + X$
$\sigma_{\psi} \sim 15^{\circ}$	$\sigma_\psi {\sim} 0.5^\circ$
$\sigma_E/E \sim 15\%$	$\sigma_E/E \sim 25\%$

Double-bang $v_{\tau} + N \rightarrow \tau + X$ \downarrow decay

Visible only for high energy ν_{τ}

Reconstruction of direction in track events

Various reconstruction methods are currently available (e.g. ML-based reco.)

However, current realtime prompt reports still use "spline-MPE" fit

 \rightarrow uses information of multiple hits and ice properties

What IceCube told us: diffuse ν flux

- Strong evidence of the astrophysical background ν (a.k.a. diffuse ν flux)
- $E^2 \phi_{\nu} \sim 10^{-7} 10^{-8}$ GeV· cm⁻² · s⁻¹ · sr⁻¹ in 10-100 TeV
- $dN/dE \propto E^{-\gamma}$ with $\gamma \sim 2.3 2.7$
- Consistent with isotropic distribution

Flux measurement w/ track + cascade combined fit

- Efforts to combine cascade + track channel
 w/ consistent systematic uncertainty treatment
- Broken power law shows better agreement.
 We might see some structure beyond the single power law.

Where is the origin of the neutrinos?

Identification of a blazar as a ν -source (2017)

Observation of ν by Seyfert galaxy (2022) Observation of ν from galactic plane (2023)

NO observation of ν from BOAT GRB (2022)

Several objects are possible sources of neutrinos. However, they are not sufficient to account for the magnitude of the total diffuse flux.

Updated point source analysis 2022

- Northern sky scan w/ improved method of the angular uncertainty estimate
- Two types of analysis performed

 Unbiased scan under hypotheses of γ: float, γ=2.0, and γ=2.5

The 4th hottest spot is coincident to NGC4151.

2 Time-integrated analysis for 110 directions of preselected galaxies.

The hottest candidate (NGC1068) shows the significance of 4.2σ.

Science **378**, 538–543 (2022)

Declination [deg]

Neutrinos from the galactic plane Science 380, 6652, 1338 (2023)

Neutrino Energy E_{ν} / GeV

- Southern sky from the galactic plane
- Cascade selection w/ convolutional neural network
 - $\checkmark\,$ higher purity of astrophysical neutrinos than track sample
 - $\checkmark\,$ x20 times higher effective area than the conventional method
 - $\checkmark\,$ angular uncertainty of $\sim\,10^\circ$ fit to spatial distribution of galactic plane

Observation of the neutrino emission from the galactic plane at the 4.5σ C.L.

Follow-up analysis of BOAT GRB

- Brightest of all time (BOAT) GRB observed in 2022 : >100 brighter than the previous brightest GRB (once per 1000 yrs).
- Ideal direction for IceCube
- Dedicated follow-up were performed in various channels and time window GFU (300 GeV –), GRECO (10 GeV – 1 TeV), ELOWEN (1 GeV – 10 GeV)
 - \rightarrow No significant detection of neutrinos

Characterization of neutrino sources (transients) 13

- \mathcal{E}_{ν} : Neutrino emission energy per source
 - : Source rate density

 $\phi_{\nu} \propto \mathcal{E}_{\nu} \times \rho$

Complementary hypotheses

Bright but rare: e.g., GRB, Jetted TDE

Dim but frequent: e.g., SNe, LLGRB

Follow-up observation of neutrino sources

Neutrino comes from distant universe

a big challenge for follow-up observations

- An observation of distant sources requires big (good) telescopes
- v-angular resolution $\sigma \sim 1^{\circ}$ (90%) \rightarrow significant contaminations from unrelated transients

A constraint of a single neutrino observation shows a wider tail towards high redshifts.
Difficult to separate from BGs particularly for long time scale transients such as SNe.

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

Neutrino multiplets

Multiplets $\rightarrow N \ge 2$ coincident *v*-signals in ΔT from the same direction

- Multiplet detection limits the distances of sources → typically $z \ll 0.1$, which suppresses a contamination of unrelated transients
- Improves angular resolution

ightarrow for alert level, the 90% containment angle is $\psi_{90\%} \sim 0.3^{\circ}$

Neutrino multiplets are very useful signature for follow-up analysis

One Month MultipLET (OMMLET) alert

16

- > Plan to issue 30-day-long multiplet alerts \rightarrow trigger follow-up for long time scale transients
- ➢ Biases close sources (z<0.1)</p>
- > Particularly, synergies with BNS for small ν -energy hypothesis (d~200 Mpc)

Gravitational follow-up by IceCube

91 GW during O3

GW alerts $\rightarrow \nu$ follow-up

Provides much smaller localization $\sigma \sim 1^\circ$

Two types of follow-up realtime analyses are performed

- Time window: $T_v T_w \in (-500 \text{ s}, 500 \text{ s})$
- Low latency algorithm for MM astrophysics (LLAMA) Bayesian style analysis
- Un-binned maximum LLH: Frequentist approach

Follow-up for 91 GWs in O3 were performed. p-values were consistent with uniform distribution.

Gravitational follow-up by IceCube (UML)

- The best fit direction is determined by maximizing $TS_{\nu+gw}$
- Significance of ONLY neutrinos is computed for a given GW skymap P_{gw}(Ω).
 Should be interpreted as *p*-value (*v*|gw) and not *p*-value (*v* & gw)
- Two tests of ± 500 s and (-0.1 d, 14 d) are performed.

Gravitational follow-up by IceCube (LLAMA)

Low Latency algorithm for MM astrophysics (LLAMA)

Phys. Rev. D 100, 083017

$$\begin{array}{l} \text{signal} \\ \text{Metric of significance: Bayes factor} \\ \mathcal{O}_{\text{gw}+\nu} = \frac{P(H_{\text{s}}|\mathbf{x}_{\text{gw}}, \mathbf{X}_{\nu})}{P(H_{0}|\mathbf{x}_{\text{gw}}, \mathbf{X}_{\nu}) + P(H_{c}|\mathbf{x}_{\text{gw}}, \mathbf{X}_{\nu})} \end{array}$$

 \mathcal{H}_s : both GW and ν are signals \mathcal{H}_0 : both GW and ν are backgrounds \mathcal{H}_c : either one of GW or ν is signal

- The p-value can be interpreted as p-value ($\nu \& gw$)
- → UML and LLAMA are complementary test Particularly, LLAMA uses the distance information under its prior distribution (uniform)

Sky maps GW + ν

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

The smallest p-value as of last year ~ 0.3%

- Q. Any requirement on the localization of GW?
- A. IceCube is 4π detector.
 - \rightarrow No technical requirements in terms of follow-up.

However, if we search for transients in +/- 1 day neutrino BG rate is ~ $O(1/30) \text{ deg}^{-2} \text{ day}^{-1}$

Sensitivity significantly improves if $\Omega_{gw} \lesssim 30~deg^2$

IceCube-Gen2

21

The IceCube-Gen2 Neutrino Observatory

Parts I and II (Part III will be released at a later time.)

Version: July 27, 2023

https://icecube-gen2.wisc.edu/science/publications/tdr/

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

IceCube-Upgrade (Gen2-phase1)

- ➢ Installation of 700 sensors 25/26 winter
- Targeting "Low" energy (GeV) neutrinos
 - ν oscillation & GeV- ν astrophysics
- Precise measurement of ice properties

- Chiba produced 300 optical modules (D-Egg)
- "Detectors made-in-Japan" have already arrived at Antarctica!

From Quarks to Neutron Stars. Nobuhiro Shimizu (Chiba)

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

What IceCube-Gen2 delivers

- \mathcal{E}_{ν} : Neutrino emission energy per source
- ρ : Source rate density

 $\phi_{\nu} \propto \mathcal{E}_{\nu} \times \rho$

Bright but Rare

There sources are not favored by measurement.

5σ detection level IceCube (10y, 5σ discovery potential)

With the updated detectors, we can challenge dim but frequent transients.

Search for ν -emission sources with Gen2

25

Search for cosmogenic ν with Gen2

>PeV neutrinos from interaction between cosmic ray and CMB photons a.k.a., **GZK neutrinos**

26

 v_{GZK}

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

Sensor for IceCube-Gen2

- Pack multi-PMTs in an egg-shaped glass
- Use silicone elastomer's light guide (gel pad) to efficiently lead photons up to PMTs

A factor of >4 improvement compared to IceCube-DOM

Summary

- Origins of high energy multi-messengers are not yet clarified
- IceCube partially revealed characteristics of neutrinos
 - Energy distribution of flux
 - Sources (though still very much limited)
 Blazer, Seyfert galaxy, Galactic plane
- Follow-up observations are important
 - Need to overcome statistical game on the chance coincidence
 - Follow-ups of GW are on-going
- IceCube-Gen2 project will improve the sensitivity by an order of magnitude.

29

Backup

From Quarks to Neutron Stars: Nobuhiro Shimizu (Chiba)

IceCube-Extension

IceCube-Upgrade (Gen2-Phase1)

- Installation of 700 sensors
- "Low" energy neutrinos
 - ν oscillation & GeV- ν astrophysics
- Precise measurement of ice properties

Start data collection in 2026

IceCube-Gen2

- Installation of new 10,000 sensors
- Aiming for "High" energy neutrinos

30

IceCube experiment

