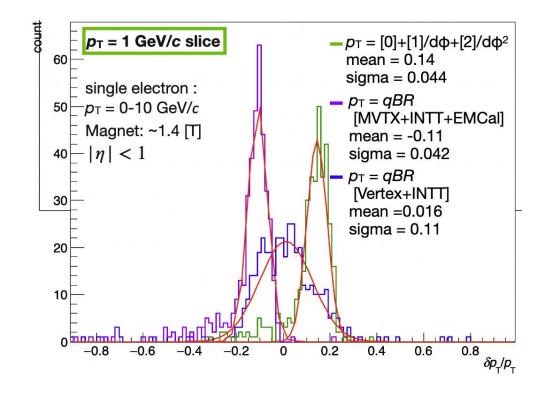
INTT-Calo Tracking Taskforce

Yuko Sekiguchi RIKEN

Motivation of this taskforce

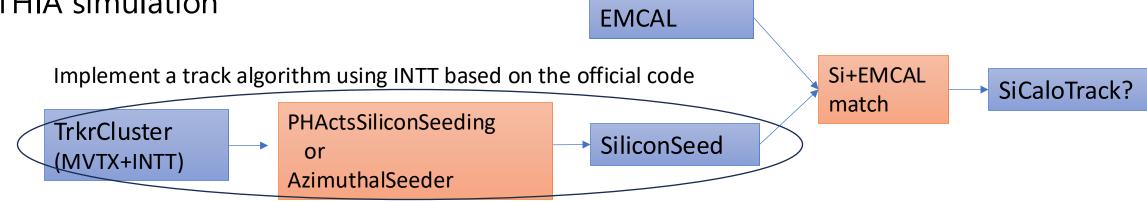
- The TPC was not operational in the early period of pp collisions.
- Silicon tracks alone provide ~10% momentum resolution.
- Statistics is eight times larger than runs after TPC included.
 - Calorimeter+Silicon: 107 pb-1 (0mrad+1.5mrad)
 - All detector: 13 pb-1 (triggered, 1.5mrad)
 - Streaming: 3 pb-1
- By connecting the outer EMCAL with silicon tracks, a few percent momentum resolution can be achieved.
 - Invariant mass spectrum of J/ψ and Y
 - Direct photon
 - Asymmetry in particle production
 - pT differential flow


Takuya's study

• Takuya made a framework and estimated that pt resolution can be a few percent using Monte Carlo simulations as expected.

INTT + EMcal Hit Matching Algorithm

(1) Find a inner INTT cluster having the closest $\phi_{outer INTT}$ <<u>TempINTTIOMatching</u>> (2) Caclulate $d\phi/dr$ (outer INTT - inner INTT) < <u>TempCalcdPhidR</u>> (3) Searching for an EMCal cluster (> 0.1 MeV) having the highest energy - 5° (~ 0.087 rad) in the ϕ_{Cal} range ϕ_{INTT} - 5° < ϕ_{Cal} < ϕ_{INTT} + $d\phi_{\text{Cal}}$ + 10° (3) $d\phi_{\rm Cal} = d\phi/dr * (R_{\rm EMCal} - R_{\rm INTT}) < {\rm TempInttCalMatch} >$ dф EMCal $d\phi = dR(\frac{d\phi}{dr})$ dф (2) - 10° (~0.17 rad) dφ/dr target INTT INT


~4 % pT by Calo+Silicon

Outlook

The goal for this taskforce is to get this framework recognized as one of sPHENIX's official tracking algorithms.

- Calorimeter Clustering (Jingyu)
- Charged hadrons and muons (Jaein)
- Silicon tracking (Yuko)
- Vertex Finder (Genki?)
- Optimize silicon-Calo matching
- PYTHIA simulation

