Self Introduction

Ryotaro Koike (Kyoto University Nuclear Hadron Phys. Lab. M2)

- Hometown: Oita Prefecture Usuki (1y) → Oita(16y) → Fukuoka (1y) → Kyoto(~7y)
- Hobby : Tennis, Fishing,

@Goto Islands in Nagasaki

Development of new High-Voltage Electrodes for Multi-gap Resistive Plate Chambers in the MARQ experiments

Ryotaro Koike Kyoto University

Introduction

MARQ experiments

Collection of experiments at the J-PARC π 20 beamline (π , K, p up to 20 GeV/c) such as Charmed baryon spectroscopy, Xi baryon spectroscopy, and I = 3 dibaryon search.

MARQ spectrometer

A versatile spectrometer which performs particle identification even at momenta of 20 GeV/c with a great momentum resolution in a high intensity situation

<u>Multi-gap Resistive Plate Chamber(MRPC)</u> serves as a stop timing detector of TOF system in the MARQ spectrometer.

Desired Performance of MRPC

- Total Coverage: 11 m²
- Time Resolution: ~60 ps
- Efficiency: 99 %

Multi-gap Resistive Plate Chamber (MRPC)

- 4
- MRPC ··· gaseous detector for charged particles Electron avalanches ⇒ Electric distortions in gas gaps ⇒ Induce signals on readout strips

Roles of HV electrode

- Creates a uniform electric field
- Prevents the induced charge from dispersing
- \Rightarrow standard resistivity : $10^5 \sim 10^7 \Omega/cm^2$

if it's too low … Low performance due to charge sharing between strips too high … Voltage drop along the HV electrodes, causing non-uniform fields

Purpose of this work

• Problems of former HV electrode (T-9188 from the EEEC company)

- Adhesive, high-resistivity tape
- Different resistivities for different lots
- **Discontinued**, causing MRPC developments in Japan difficult
- \Rightarrow Purpose:

To find alternative HV electrodes and make MRPC development possible

Requirements for HV electrodes

- Work as HV electrodes for MRPC (i.e., HV suppliable and signals readable)
- Stable operation with large MRPC (MRPC for MARQ experiments will be 1.8 m long)
- Uniform Resistivity
- (mass-productivity)
- (stable resistivity, resistivity reproducible, stable supply)

Search for new HV electrodes

No promising candidates so far

- First, we looked for high-resistivity adhesive tapes. (2020 Mater thesis from Tohoku Univ.) Found one candidate (MK-APT from Tanimura company), but stability issue.
- We also considered coatings which are used in foreign groups, but faced problems of imports, maximum size, coating methods, etc.

This work focused on new <u>conductive coatings</u>

Coatings on Glass

- HV electrode and Glass is well attached
- Simple assemble procedure
- Risk of damaging the glass while coating
- Varying quality due to hand coating

Coatings on Film

- Produce HV electrodes separately from glass
- Minimum risk of damage
- Great mass-producibility by machine coating
- Reproducible and even quality

(transparent) Active area: 190 mm

at+图PSA

List of new candidates

Seplegyda from Shinetsu Polymer (Japan)

- Polythiophene-base conductive polymer (intrinsically conductive polymer)
- Applications: antistatic on packing sheet for IC, display

Air-Opaque from Badger Air-Brush

- Colloidal graphite gives conductivity
- Water-based ink for illustrators
- adopted in SHiP experiment

Graphit from Kontakt Chemie

- Colloidal graphite gives conductivity
- Conductive coating used for electronics mainly in Europe
- adopted in Lyon university

• CS-6301 / CS-5302 from Colcoat (Japan)

- Nano carbon dispersed polysiloxane
- Antistatic application

• KP-8348-1 / KP-K2919-1 from Kansai-Polymer (Japan)

- Fluoropolymer-base carbon dispersed conductive coating
- Applications: antistatic in semiconductor region

Workflow

Assembled prototype MRPCs using new HV electrodes

- asked companies to apply the coatings
- fabricated prototypes in our laboratory
- started with small size(20 cm sq.), and then made the succussed ones larger (~1 m long)

Evaluated the performance using an electron beam

- SPring-8 LEPS2 beamline
- e^{-}/e^{+} of ~1 GeV/c momenta
- Checked whether the chamber is working based on efficiency and time resolution

Evaluation method

- Efficiency: (*N*_{MRPC_hits} / *N*_{trigger})
- Time Resolution: standard deviation of $(T_{MRPC} T_{RF})$,

where T_{MRPC} is the mean timing of signals from the left end and right of a strip, and T_{RF} is the timing of RF signal, which is synchronized with the beam bunch.

 $255 \,\mu\text{m} \times 5 \,\text{gaps} \times 2 \,\text{stack}$

Prototypes

Coating	substrate	technic	resistivity	CR test	1st beam test	2nd beam test
Seplegyda	Film	barcoater	$\sim 6 \times 10^5 \ \Omega/{\rm cm}^2$	×	-	-
Air-Opaque	Film	barcoater	$\sim 5\times 10^{\bf 10}\Omega/{\rm cm}^2$	×	-	-
1 Graphit 33	Film	paint roller	$\sim 2 \times 10^6 \ \Omega/{\rm cm}^2$	\bigcirc	conducted	-
② CS-6301 (1)	Glass	hand spray	$\sim 4 \times 10^6 \ \Omega/{\rm cm}^2$	\bigcirc	conducted	-
③ CS-6301 (2)	Film	microgravure	$\sim 3 imes 10^{6} \ \Omega/{ m cm}^2$	\bigcirc	conducted	conducted
④ CS-5302	Film	microgravure	$\sim 2 \times 10^4 \ \Omega/{\rm cm}^2$	\bigcirc	-	conducted
⑤ KP-8348-1	Glass	hand spray	$\sim 2 \times 10^4 \ \Omega/{\rm cm}^2$	\bigcirc	conducted	conducted
6 KP-K2919-1	Film	hand spray	$\sim 2 \times 10^8 \ \Omega/{\rm cm^2}$	\bigcirc	-	conducted

- Seplegyda : dark currents × Due to intrinsically conductive coating?
- Air-Opaque : dark currents × Difficulties in getting desired resistivity
- Others: passed CR test in laboratory, and proceed to the beam tests

Prototypes

Coating	substrate	technic	resistivity	CR test	1st beam test	2nd beam test
Seplegyda	Film	barcoater	$\sim 6 \times 10^5 \ \Omega/{\rm cm}^2$	×	-	-
Air-Opaque	Film	barcoater	$\sim 5\times 10^{10}\Omega/\mathrm{cm}^2$	×	-	-
1 Graphit 33	Film	paint roller	$\sim 2 \times 10^6 \ \Omega/{\rm cm}^2$	\bigcirc	conducted	-
② CS-6301 (1)	Glass	hand spray	$\sim 4 \times 10^6 \ \Omega/{\rm cm}^2$	\bigcirc	conducted	-
③ CS-6301 (2)	Film	microgravure	$\sim 3 imes 10^{6} \ \Omega/\mathrm{cm}^2$	\bigcirc	$\operatorname{conducted}$	\rightarrow conducted
④ CS-5302	Film	microgravure	$\sim 2 \times 10^4 \ \Omega/{\rm cm}^2$	\bigcirc	-	conducted
(5) KP-8348-1	Glass	hand spray	$\sim 2 \times 10^4 \ \Omega/{\rm cm}^2$	\bigcirc	$\operatorname{conducted}$	→ conducted
6 KP-K2919-1	Film	hand spray	$\sim 2 \times 10^8 \ \Omega/{\rm cm^2}$	\bigcirc	_	conducted

- CS series (③ and ④) and KP series (⑤ and ⑥) were tested using large prototypes, based on the results of the first beam test
- Stopped trying ① Graphit 33 because it has a problem with import

• Only the results of (5) KP-8348-1 will be shown in this talk.

Results

(5) KP-8348-1 showed reasonable performances even with a ~1 m prototype.

Results

(4)

Reasonable performances confirmed for all the other candidates too However... shifts of plateau curve were seen for both CS series (probably 1 electrode among 4 was electrically detached) although there was no problem after 72 hours of endurance test in the lab.

Summary

We explored an alternative new HV electrodes for MRPC detector

Multiple candidates eventually are found;

• ③ CS-6301 / ④ CS-5302

99 % efficiency, \sim 70 ps time resolution at best.

Coating on a film enables us to produce a large quantity with desired resistivity. Issues with stability, which may come from assembling process of MRPC.

• (5) KP-8348-1

99 % efficiency, \sim 100 ps time resolution.

Hand coating resulted in high risk of glass breaking, high cost of mass production, and low reproducibility in resistivity.

The operation was very stable.

⇒ CS series if the stability issues are resolved

To do

- To find the reason why CS series broke and fix it.
- Optimization of resistivity.

Backup

Effects of time resolution to PID

- TOF time resolution affects the resolution of mass squared
 → affects the fraction of events in which particles are identified
 - Start counter is already developed ($\Delta T \sim 40 \text{ ps}$)

If $\Delta T_{\rm MRPC} \sim 90 \text{ ps} \rightarrow$

Image of HV connecting point

Coating methods

https://www.labojapan.co.jp/labotech/coating/#micro

Hand spray

https://kansaipolymer.co.jp/strength/method

https://www.mitsuiec.co.jp/Wirebar

Dedicated electronics and methods

18

1 stack MRPC と 2 stack MRPC

Small (200 mm \times 200 mm) prototypes for 1st beamtest

塗料	塗布形態	抵抗率	Gas gap configuration
Air-Opaque	フィルム塗布	$5 \times 10^{10} \Omega/\mathrm{cm}^2$	255 $\mu m \times 5 \text{ gap} \times 1 \text{ stack}$
Graphit 33	フィルム塗布	$2 imes 10^6 \Omega/{ m cm}^2$	255 $\mu\mathrm{m}\times5~\mathrm{gap}\times1~\mathrm{stack}$
KP-8348-1	ガラス塗布	$2 \times 10^4 \Omega/\mathrm{cm}^2$	255 $\mu\mathrm{m}\times5~\mathrm{gap}\times1~\mathrm{stack}$
CS-6301 (1)	ガラス塗布	$4 \times 10^6 \Omega/{\rm cm}^2$	255 $\mu\mathrm{m}\times5~\mathrm{gap}\times1~\mathrm{stack}$
CS-6301 (2)	フィルム塗布	$3 imes 10^6\Omega/{ m cm}^2$	255 $\mu\mathrm{m}\times5~\mathrm{gap}\times1~\mathrm{stack}$
セプルジーダ	フィルム塗布	$6\times 10^5\Omega/{\rm cm}^2$	255 $\mu\mathrm{m}\times5~\mathrm{gap}\times1~\mathrm{stack}$

Large (~1 m long) prototypes for 1st beamtest

電極	塗布形態	塗布方法	Glass size	stack	ī率
CS-6301	フィルム塗布	マイクログラビア	$940\mathrm{mm} imes230\mathrm{mm}$	2 stack	$\sim 1 \times 10^6 \Omega/{\rm cm}^2$
CS-5302	フィルム塗布	マイクログラビア	$870\mathrm{mm}\times230\mathrm{mm}$	2 stack	$\sim 2\times 10^4\Omega/{\rm cm^2}$
KP-8348-1	ガラス塗布	スプレーガン	$940\mathrm{mm}\times230\mathrm{mm}$	2 stack	$\sim 2\times 10^4\Omega/{\rm cm^2}$
KP-K2919-1	フィルム塗布	スプレーガン	$200\mathrm{mm}\times200\mathrm{mm}$	1 stack	$\sim 2\times 10^8\Omega/{\rm cm^2}$
(5	Gas	gap configuration	per stack is 260μ	${f m} imes{f 5}{f gaps}$	である。)

Adjustment of resistivity

- We can adjust various resistivity using CS-6301 by changing the thickness of coating.
- We made several sample and confirmed the resistivity shown below can be achieved.
- CS-6301 : 10^5 , 10^6 , $10^7 \Omega/sq$.
- CS-5302 : 10^4 , 10^5 , $10^8 \Omega/sq$.

Electric contact was assured by pressing

Grounding for noise reduction

結果(第二弾)

● 電圧降下の兆候もなかった

結果(第二弾)

26

● 電圧降下の兆候もなかった

X position scan の結果 (⑤ KP-8348-1)

図 4.6: ポリエステルフィルムスペーサーの構造。市販のフィルムやテープを組み合わせている。