Vernier scan Au-Au

2025/02/28 Takahiro Kikuchi

Vernier scan

- Machine luminosity is defined as
- $\mathcal{L}_{machine} = \frac{f_{beam}}{2\pi\sigma_x\sigma_y} N_{bunch} N_b N_y$
- σ_x , σ_y are the effective beam width derived from vernier scan.
- MBD cross section is defined as
- $\sigma_{MBD} = \frac{R_{max}}{\mathcal{L}_{machine} \varepsilon_{vertex}}$

Result of measurement in Au-Au collision

- The machine luminosity is $3.6\ mb^{-1}s^{-1}$.
- MBD cross section is 7.1 barn.
- Beam width of each direction is

0.174 mm(horizontal), 0.291 mm(vertical).

- Beam set position is used.
- Corrections which are applied are

z-vertex cut (|z|<200 cm), DCCT, emittance.

Result of measurement in Au-Au collision

- The machine luminosity is $3.67\ mb^{-1}s^{-1}$.
- ZDC cross section is **12.8 barn**.
- Beam width of each direction is

0.172 mm(horizontal), 0.287 mm(vertical).

- Beam set position is used.
- Corrections which are applied are DCCT, emittance.

Comparison with Phenix measurement

- This result 7.1 barn is similar to Phenix result 6.5 barn.
- Phenix's one is applied some other correction, like vertex cut.
- These fit may need double gaussian fit, as Phenix did for ZDC vernier scan.

PHENIX 19617: Hor fit (set) ZDC double Gauss fit single Gauss fit 10⁵ 10⁴ 10 χ^2 / ndf 11.62/9 121.8 / 11 χ^2 / ndf 1stMax (2G) 4.847e+04 ± 1.85e+04 offset (1G) 1507 ± 43.12 naxPos (2G) -0.003735 ± 0.001459 max (1G) 1.05e+05 ± 809.1 1577 ± 0.02199 2ndMax (2G) 6.184e+04 ± 1.852e+04 maxPos (1G) -0.003391± 0.00142 2ndWidth (2G) 0.2593 ± 0.01734 width (1G) 0.2267 ± 0.001044 offset (2G) 1142 ± 185.7 0.5 set displacement (mm) -0.5 0 -1

Figure 1: The signal from the PHENIX experiment ZDCs fitted with a 1-Gauss and a 2-Gauss fit function. The 2-Gauss fit function in this case is favored by about a factor 10 in χ^2/ndf . This fill was selected for demonstration purpose only.

The unique issues in Au-Au collision

- Run 54733 has a lot of background noise of charged particles.
- There're peaks in $z = \pm 250$ cm (~10% of hit in head-on).
- It remained even with a big beam displacement.
- They're should be removed when calculating beam width.
- This background makes it difficult to estimate the effect of accidental coincidence and pileup effect.
- That will increase error at the end.

Scale up from event base data

- Since z vertex cut is mandatory, scale up from event is needed.
- The consistency of event base and raw scaler was checked with p-p data.
- From raw (Cheng Wei): $\sigma_x = 0.2698 mm$
- From scaled : $\sigma_x = 0.2699 mm$

Corrections

• Applied

Background cut with z vertex DCCT Emittance

 Not applied Multiple collision/Accidental coincidence Correction of z vertex detection efficiency with ZDC

Corrections: Background cut

- There are z vertex peaks around |z|=250 cm.
- That doesn't show up when we take coincidence with ZDCN&S, that means they are charged particles.

Corrections: Background cut

- This background is still there during a big beam displacement.
- The rate is ~4000 Hz (head on) to ~2000 Hz (biggest displacement)
- I cut the event which |z| > 200 cm.

Corrections: DCCT

- DCCT measure the number of particles N in each ring.
- This correction is calculated as $\frac{N_{yellow,ref}N_{blue,ref}}{N_{blue,ref}}$

N_{yellow} N_{blue}

Horizontal				
Step	corr. factor			
1	1			
2	1.00128246			
3	1.002562318			
4	1.003857152			
5	1.00541094			
6	1.007941984			
7	1.010583913			
8	1.012033314			
9	1.013567496			
10	1.015397191			
11	1.017836241			
12	1.022350399			

Vertical						
Step	corr. factor					
1	1.028015253					
2	1.029384549					
3	1.030732208					
4	1.031980103					
5	1.033207602					
6	1.035030605					
7	1.036890505					
8	1.038312022					
9	1.039981934					
10	1.042046948					
11	1.045122516					
12	1.053191747					

Corrections: Emittance

- The emittance σ increases especially after beam injection.
- This measurement was done soon after injection, so it is needed to apply the emittance correction.
- From CAD, this correction is described as $\sqrt{\frac{\sigma}{\sigma_{\rm ref}}}$

• where
$$\sigma = \sigma_{\mathrm{B,x}} \times \sigma_{\mathrm{B,y}} \times \sigma_{\mathrm{Y,x}} \times \sigma_{\mathrm{Y,y}}$$
.

Horizontal		Vertical	
Step	corr. factor	Step	corr. factor
1	1	1	1.02194775
2	1.002828644	2	1.018129227
3	1.003474516	3	1.024882154
4	1.004659761	4	1.027266898
5	1.00723511	5	1.027629126
6	1.011241424	6	1.030937535
7	1.00986279	7	1.031076761
8	1.010237106	8	1.032376737
9	1.012156062	9	1.033096225
10	1.01640327	10	1.033411152
11	1.017394959	11	1.035492194
12	1.017685588	12	1.031330708

Multiple collision/Accidental coincidence

- These are not applied to the result by now.
- Current equations that correct pileup effect and accidental coincidence premise no background.
- It seems impossible to subtract triggers which were from background, especially in MBD N trigger and MBD S trigger individually.

Multiple collision

- It may be still possible to give the upper limit of pileup effect.
- Assuming that all MBD N and S trigger were fired by true collision, we get the maximum range of multiple collision correction.

•
$$R_{corr.} = \frac{\sum_{i=1}^{\infty} i P(i)}{\sum_{i=1}^{\infty} P(i)}$$
, where $P(i) = \frac{\mu^k}{i!} e^{-\mu}$, $\mu = \frac{N_{mbdN\&S}}{N_{clock}}$

The maximum correction would increase the collision rate ~1% (head-on).

Accidental coincidence

- High MBD N and MBD S rate relative to MBD NS will provide a lot of accidental coincidence that should be removed.
- From the z-vertex distribution with displacement 1 mm, there seems few events that have |z| < 200 cm that caused by background.

•
$$k_S = \frac{N_S - N_{NS}}{N_{NS}} \sim 0.3$$
 in pp run. (consistence with Phenix result)
• $k_S = \frac{N_S - N_{NS}}{N_{NS}} \sim 3.5$ in AuAu run. (Almost same value as ZDC in pp)

Accidental coincidence

- From the z-vertex distribution with displacement 1 mm, there seems few events that have |z| < 200 cm that caused by background.
- I'm still thinking how to get the upper limit of accidental coincidence.
- For reference, the accidental coincidence correction that assumes that all trigger ware fired by collision event would reduce the collision rate ~5% (head-on).

ZDC z-vertex reconstruction

- I tried ZDC z-vertex reconstruction with landau fit. (Same as pp)
- Maybe by the poor time resolution, the fit affected by the initial value.
- And somehow ZDC z vertex distribution is more centered compared to MBD's one.
- That seems useless.

Set position vs Beam Position Monitor (BPM)

	Luminosity [mb-1s-1]	MBD cross section [b]	Beam width [mm](hor.)	Beam width [mm](ver.)
Set position	3.6	7.1	0.17	0.29
BPM	3.4	7.6	0.23	0.23

- Set position is used for pp run since BPM was unreliable for proton beam which had low current.
- That should be more reliable with Au beam.
- But there's a big difference in the beam width using set position or BPM in this measurement.

Summary

- If we take Au-Au vernier scan again, that must be done around the beam dump.
- Background of charged particles increases the error.
- ZDC vertex reconstruction seems not good.
- But the current result is not far away from previous Phenix result.
- Especially for vertical fit, it may be needed to use double gaussian fit.
- There are huge gap between set position and BPM.