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Abstract

The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at
a center-of-mass energy of /syy = 200 GeV is measured using data collected by the
sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in
the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied
for detector acceptance and reconstruction efficiency. The measured distributions are
consistent with previous experimental results from the Relativistic Heavy Ion Collider,
with a [1.6]'reduction in uncertainty for measurements using the tracklet method. This
result features full azimuthal coverage at mid-rapidity and serves as a key commission-
ing benchmark by validating the performance of several new detector components,
thereby supporting the broader sPHENIX physics program.

1This value is based on our current conservative estimate including all sources of uncertainty. The finalized
number will be updated when the full set of uncertainties are evaluated and included.
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1 Introduction

A hot medium of strongly interacting, deconfined quarks and gluons, known as the quark-
gluon plasma (QGP), is formed in ultra-relativistic heavy-ion collisions [1]. The multiplicity
and pseudorapidity (n) distributions of charged particles produced in these collisions are crit-
ical observables for characterizing the initial conditions and the subsequent hydrodynamic
evolution of the QGP [2]. Furthermore, the dependence of charged-particle multiplicity on
the colliding system, center-of-mass energy, and collision geometry provides insight into nu-
clear shadowing, gluon saturation effects [3], and the contributions and modeling of particle
production from hard scattering and soft processes [4, 5|. Studying the charged-hadron mul-
tiplicity and its dependence on 7 is essential for understanding the formation and properties
of the QGP in heavy-ion collisions.

At Relativistic Heavy-Ton Collider (RHIC), measurements of the system-size dependence
of charged-particle n density, denoted as dNg,/dn, have been performed for copper-copper
(Cu+Cu), gold-gold (Au+Au), and uranium-uranium (U+U) collisions at various center-
of-mass energies. Similarly, the ALICE, ATLAS, and CMS experiments at Large Hadron
Collider (LHC) have reported dN, /dn at mid-rapidity (|n|< 0.5), expressed as (dN,/dn), for
lead-lead (Pb+Pb) and xenon-xenon (Xe+Xe) collisions at TeV energy scales. These mea-
surements, summarized in Table 1, have revealed several key empirical trends. (1) Charged—
particle production approximately follows a power-law scaling with center-of-mass energy.
(2) Central heavy-ion collisions show a steeper increase in (dNg,/dn) as a function of cen-
ter-of-mass energy compared to proton-proton (p+p) and proton-nucleus (p+A) collisions.
(3) The values of dNg,/dn, normalized by the number of participating nucleon pairs, Npayt,
have a non-linear increase. (4) The shapes of the Ny dependence remain consistent across
different collision energies. These findings provide an opportunity to test scaling laws and
models tuned to data from different energy regimes and evaluate their applicability to other
collision systems.

This note describes the measurement of dN,/dn using data collected by the sSPHENIX
detector, specifically the Intermediate Silicon Tracker, INTT, and a minimum-bias trigger
based on inputs from the Minimum-Bias (MIN. B1as) Detector, MBD. The analysis depends
on the synchronization and functionality of key detector components and the reconstruction
chain, including triggering, synchronization across subdetectors, proper operation and co-
ordination of readout servers within individual subdetectors, centrality determination, data
readout, bad channel mapping, hit decoding and unpacking, clustering, vertex finding, and
detector alignment. Consequently, this work is closely tied to the commissioning of the
detector.

Two analysis approaches have been developed. The first, referred to as the combina-
toric method, is based on techniques from the PHOBOS and PHENIX publications [10, 36],
while the second, called the closest-match method, follows the CMS Run 2 Xe+Xe and
Run 3 Pb+Pb analyses [33, 32]. Both approaches share common global objects, including
tracking and calorimeter data storage tapes (DSTs), simulations, INTT calibrations, clus-
ters, scaled trigger objects, MIN. BIAS classification based on the MBD and Zero-Degree
Calorimeter (ZDC) information, centrality calibration, and truth-level definitions. How-
ever, the approaches differ in their methods for vertex reconstruction (Section 6.4), tracklet
reconstruction and counting (Section 6.5), correction factors (Section 7), and systematic un-



Table 1: Selected measurements from previous and present experiments. Information not
explicitly mentioned in the publication is marked as 7.

Experiment Collision species Center-of-mass energy Number of analyzed events Reference
130 GeV ~ 137k (6]
Au+Au 19.6 GeV 40k
PHENIX 130 GeV 160k 7]
200 GeV 270k
U+U 193 GeV [8]
56 GeV 382
AutAu 130 GeV 724 ]
PHOBOS Au+Au 19.6-200 GeV
Cu+Cu 22.4-200 GeV [10]
d+Au 200 GeV )
p+p 200 and 410 GeV
, 130 GeV [11]
BRAHMS Au+Au 9200 GeV [12]
STAR Au+Au 130 GeV 60k [13]
900 GeV 284 [14]
900 GeV 150k 15
2.36 TeV 40k N
ptp 7 TeV 300k [16]
ALICE 13 TeV ~15M [17]
0.9, 2.36, 2.78, 7, and 8 TeV 40k-343.7M [18]
0.9, 7, and 8 TeV 7.4%k-61M [19]
5.02, 7, and 13 TeV - [20]
Pt Ph 2.76 TeV 2711 [21]
5.02 TeV ~ 100k [22]
Xe+Xe 5.44 TeV ~1M 23]
0.9 and 10 TeV ~ 5k [24]
0.9TeV ~ 40.3k 25
2.36 TeV ~10.8k °
p+p
7TeV ~ 55k [26]
CMS 0.97 2.36, and 7 TeV 12-442k [27]
8 TeV - (With TOTEM) [28]
13 TeV 11.5M [29]
5.02 TeV ~ 420k .
pFPb 8.16 TeV ~3M [30]
Pt Ph 2.76 TV ~ 100k [31]
5.36 TeV - 32]
Xe+Xe 5.44TeV ~1.36 M 33]
ATLAS p+Pb 5.02 TeV ~21M 34]
Pb+Pb 2.76 TeV ~1.63M [35]
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certainties (Section 8). The shared objects will be discussed jointly, while analysis methods
are introduced and explained separately.

2 Detector - INTT

The INTT is a two-layer barrel strip tracker [37] with a clamshell structure, positioned
between the Monolithic Active Pixel Sensor (MAPS)-based Vertex Detector, MVTX, and
the Time Projection Chamber, TPC. Its primary objective is to provide the sPHENIX
tracking system with the capability to associate reconstructed tracks to the RHIC bunch
crossings with a single-bunch-crossing timing resolution, enabling effective out-of-time pileup
discrimination and suppression. This is achieved through the high processing frequency of
the INTT FPHX readout chip, which operates at 9.4 MHz [38] and synchronizes with the
RHIC bunch-crossing frequency, resulting in a time resolution of O(100ns) as shown in
Figure 1. In addition, by providing two additional spatial points, the INT'T bridges the
MVTX and TPC, improving the pattern recognition for track reconstruction.

The INTT is designed to provide hermetic 27 azimuthal coverage and a pseudorapidity
range of |n|< 1.1 for collision vertices within +10 cm of the nominal interaction point along
the beam axis. To fulfill these requirements, the detector consists of 24 silicon ladders in the
inner barrel and 32 in the outer barrel. These ladders are arranged tangentially and evenly
spaced around the beam pipe at radial positions of approximately 7.2, 7.8, 9.7, and 10.3 cm
from the beam axis, as illustrated in Figure 2.

Each ladder has an active area of 2 x 46 cm? [39]. Two types of silicon sensors, type-A and
type-B, are employed. The type-A sensor features an active area of 128 x 19.968 mm? and is
segmented into eight rows and two columns of blocks. Each block contains 128 strips with
a 78um pitch and a strip length of 16 mm, oriented in the longitudinal direction. Similarly,
the type-B sensor has an active area of 100 x 19.968 mm?, divided into five rows and two
columns of blocks, with each block comprising 128 strips of the same 78um pitch but with a
strip length of 20 mm. This configuration yields a total of 6656 readout channels per ladder
and 372736 channels across the entire INTT barrel. The radiation length of a single ladder
is 1.14% X, minimizing material interference and preserving track reconstruction accuracy.

The INTT barrel is divided into two halves, referred to as the north and south barrels,
with signals read out separately from each half. Figure 3 illustrates the full readout cable
chain up to the INTT Read-Out Card (ROC). When a silicon channel is activated by its
interaction with a charged particle, the analog signal is transmitted to the FPHX chip, where
it is converted into a digital signal with an attached amplitude and bunch-crossing index.
The digital signal is then received by the INTT ROC through High-Density Interconnects
(HDI), the Bus Extender Cable (BEX), and a micro-coaxial conversion cable. The signal
packet, assembled by the ROC, is subsequently transmitted to the INTT FELIX server [40]
via a 60-meter-long optical fiber. The FELIX readout server correlates the received digital
signals with Global Level-1 (GL1) trigger signals, storing hits associated with the same GL1
trigger within an event.
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Figure 1: The timing resolution of sSPHENIX tracking system based on simulation study.
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Figure 2: Left: the cross-section view of the INTT. Middle and Right: Schematic drawings
of the INTT barrel and a INTT half ladder.
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Figure 3: Schematic drawing of INTT silicon ladder, and the full readout cable chain up to
read-out card.

3 Event selection

3.1 Data

The analysis uses MIN. BIAS (Section 3.1.5) Au+Au collision data collected on October
10, 2024, acquired without the sSPHENIX magnetic field [41]. Table 2 summarizes the key

properties of the analyzed data sample.
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Table 2: Key properties of the analyzed data DST's

Property Value
Run number 54280
INTT calibration t
catbration tag ProdA_2024
Centrality calibration tag
Calorimeter production software build ana_441
INTT production software build ana_464
Total number of events in analyzed DST's 8.79M

Total number of MIN. BIAS (Section 3.1.5) events 4.38 M

A specialized production macro has been set up to generate cluster DSTs, available at
https://github.com/sPHENIX-Collaboration/ProdFlow/tree/ppg02-qm25-cluster
ing. This macro includes the necessary settings and configurations for the hit unpacking
procedure’carried out by the FUN4ALL module InttCombinedRawDataDecoder. The key
configurations applied are:

e runlnttStandalone = true: The time_bucket information of raw hits is not stored for
further reconstruction

e set_triggeredMode = true: Data were collected with INTT operating in trigger mode
e set_bcoFilter = true: The hit BCO mask is applied
e writeInttEventHeader = true: The InttEventHeader node is stored in the output DST

With these settings, InttCombinedRawDataDecoder performs INTT calibrations, which are
detailed in Sections 3.1.1-3.1.3.

3.1.1 INTT calibration — Hit BCO mask

During Run 2024 data taking, a firmware upgrade to FELIX enabled timing synchronization
across all FELIX servers [42]. This synchronization was validated by the alignment of spikes
in the hit time bucket distribution, the hit BCO relative to the GL1 BCO, across all FELIX
servers, as shown in Figure 4.

For run 54280, the strobe length was set to 100 BCOs, allowing multiple collisions to
occur within a single strobe length. To address this, a hit BCO filter is applied to include
only hits recorded within -1 BCO relative to the GL1 BCO.

2Hit unpacking refers to the process of converting raw hit objects into TrkrHit objects, which are subse-
quently used for higher-level reconstructions.
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Figure 4: The hit time bucket distribution across all INTT FELIX servers (with the time
bucket labeled as "BCO_diff” on the X-axis).

3.1.2 INTT calibration — Hot, dead, and cold channel masks

Hot, dead, and cold channels are identified using a data-driven method based on the first
ten thousand events and masked during the hit unpacking process. For each channel in an
INTT half-ladder, the hit rate, corrected for strip length and the radius of its position, is
binned into a histogram, an example of which is shown in Figure 5. A Gaussian function is
fitted to the distribution. Channels with hit rates exceeding the mean of the fitted Gaussian
by 50 are classified as hot channels, while those falling 30 below the mean are classified
as cold channels. Channels with hit rates of zero are identified as dead channels. Table 3
summarizes the classification results, and the hit distributions with bad channels masked are
shown in Figure 6.
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Figure 5: The corrected channel hit rate distribution of FELIX server 5 and FELIX channel
3.

Table 3: The summary of channel classification of run 54280.

Channel type Number of channels Ratio

Hot 36 0.01%
Dead 5547 1.49%
Cold 9119 2.45%
Good 358,034 96.06%
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Figure 6: INTT hit map of run 54280 after applying the bad channel mask.

3.1.3 INTT calibration — Analog-to-digital conversion

The FPHX readout chip [38] used by INTT features a 3-bit analog-to-digital (ADC) converter
with eight programmable signal amplitude comparators, whose threshold settings are listed in
Equation 1 for the run 54280. When an analog signal is digitized, its amplitude is compared
against these preset thresholds. The final digital signal amplitude is determined by the index
of the comparator with the highest threshold that the signal exceeds. The digitized signal is
discarded if its amplitude is below the first comparator’s threshold (set to 35 for this run).

To determine the optimal threshold settings, the energy deposit distribution, measured
in a beam test experiment with an 800 MeV positron beam, is used as a reference, as shown
in Figure 7. The first comparator threshold of 35 effectively minimizes noise contamination
while preserving the majority of the signal distribution. The remaining threshold values are
evenly spaced for the most part, covering the full signal spectrum.

The INTT rawhit data store a 3-bit signal amplitude, which is mapped to the corre-
sponding ADC threshold during the rawhit decoding process. These hit ADC values are
then used in the clustering stage to determine the cluster position.

Threshold setting = [35, 45, 60, 90, 120, 150, 180, 210]. (1)
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Figure 7: The energy deposit distribution of INTT ladder measured in beamtest.

3.1.4 Event BCO removal

Events with a BCO difference of less than 62 relative to their preceding event are discarded to
mitigate the issue of incorrect hit association. This issue is identified as off-diagonal entries in
the correlation between the number of inner and outer INTT clusters and the MBD charge
sum, as shown in Figure 8. These off-diagonal events are not caused by the hit BCO or
bad channel masks, as they persist even when these masks are disabled. Additionally, their
presence in MIN. BIAS events suggests that they are unlikely to originate from collision-
induced backgrounds.
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The left plot of Figure 9 shows the difference in event BCO between an off-diagonal event
and its next adjacent event, demonstrating that, in most cases, the adjacent event occurs
within 60 BCOs—the INTT “open_time” during which FELIX reads out hits from a given
distinct BCO—of the event of interest. For comparison, the right plot of Figure 9 shows the
event BCO difference across all events, extending up to 200 BCOs. This highlights an issue
in INTT data acquisition, as illustrated in Figure 10 and detailed below.

When a trigger is fired, the INTT readout chip sends hits with the corresponding hit
BCO to the INTT Read-Out Card (ROC). The INTT ROC then forwards the hits to the
INTT FELIX server, which initiates a 60-BCO open_time upon receiving the first arriving
hit. If another GL1 signal occurs within this 60-BCO window, the event header of hits
associated with the previous GL1 will be overwritten. As a result, hits from the previous
GL1 will be assigned to the later GL1 signal, effectively carrying them over to the next
triggered event. Figure 11 provides additional evidence for this interpretation. The top two
plots show two events: the event of interest (BCO 1029942106868, event ID 2452, left plot)

10
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and its subsequent event (BCO 1029942106894, event ID 2453, right plot). In the subsequent
event, one spike appears at time bucket 55, corresponding to hits from the later GL1 signal.
Another spike, occurring at time bucket 29, differs from the first spike by 26 time buckets,
matching the BCO difference between the two events, 1029942106894 - 1029942106868 =
26. This alignment suggests that these hits were carried over from the previous event. The
bottom plots compare the time buckets of hits from the event of interest (blue), the adjacent
event (red), and the hits from the adjacent event recalculated relative to the event of interest
(green). The overlap between the green and blue distributions shows that some hits from
the next adjacent event share the same time bucket as the event of interest, providing clear
evidence of incorrect hit assignment.
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Figure 9: (Left) The difference in event BCO between the off-diagonal event (labeled as
BCOqf interest) and its next adjacent event (labeled as BCOyext). (Right) The event BCO
difference in all events.
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Figure 11: An example of the hit time bucket distributions for all eight INTT FELIX servers
in the event of interest (top left) and its next event (top right). (Bottom) The time buckets
of hits from the event of interest (blue), the adjacent event (red), and the time bucket of
hits from the adjacent event recalculated relative to the event of interest (green).

166 Figure 12 shows the same correlations as Figure 8, but with the event BCO removal ap-
17 plied. After this removal process, approximately 1.3% of events were discarded, irrespective
s of the centrality intervals, as shown in Figure 13.
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MBD charge sum after the event BCO removal.
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Figure 13: Fraction of events discarded by the event BCO removal as a function of centrality.

10 3.1.5 MIN. Bi1As definition
1o The MIN. BIAS criteria are defined in Ref. [43]:

171 1. The Level-1 trigger condition: at least 2 hits above threshold in both the north
172 and south MBD

173 2. Background cleaning: Events, where the charge signal in the south MBD exceeds
174 that of the north MBD by more than 10 times, are discarded

175 3. ZDC coincidence: Coincidence of energy deposit greater than 40 GeV between the
176 north and south ZDC. This significantly removes non-collision background at high
177 luminosities

178 4. MBD vertex cut: |z)[gp|< 60 cm

w 3.2  Offline selection

1o In addition to the MIN. BIAS definition, additional selections on global physics objects are
11 applied offline for the analysis:

182 e INTT vertex cut: —10cm < Reconstructed vertex Z position (vtxz) < 10cm, dis-
183 cussed in Section 6.4.3

184 e Centrality: 0 — 70%
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4 Monte Carlo

4.1 Standalone simulation framework

All simulations were produced using the FUN4ALL framework. As the analysis uses non-
standard detector configurations (such as shifted vertex positions, summarized in Table 4
and no magnetic field), and only requires the beam pipe, MVTX, INTT, and MBD to be
simulated for a small number of events, a standalone simulation setup is prepared for internal
studies. This subsection serves as documentation for reference within the collaboration.

Table 4: Summary of vertex positions in simulation.

Parameter Value

(Vtxx) -0.022 cm
(vtxy) 0.223 cm
(Vtx,) -4.39 cm

o(vtx,) 9.39cm

The framework of mass simulation production via framework and all user requests are
handled via a top-level python script which creates a condor submission file and any re-
quired folders. The framework has options to run single particle events of any particle type,
PYTHIAS, or read HepMC files. There are three different generators that have produced
HepMC files; HIJING, EP0S4, and AMPT. All three generators are used in the analysis to
verify the accuracy of the Monte Carlo samples.

To ensure the simulations are reproducible, all productions are generated using an ana
build. An ana build is a permanently archived copy of the sSPHENIX software stack that is
created every Saturday at approximately 3 am. Using an ana build also ensures that simula-
tions are performed with all calibrations, major reconstruction updates, detector geometries,
and bug fixes synchronized with the simulation DSTs centrally produced by the sPHENIX
software and production team.

Three methods are also used to track the production settings for each DST. The first
method uses the folder structure of the file, which is the most user-friendly but the most
susceptible to losing information as all a user has to do is move the file. Each DST is stored
within subfolders that define the production information, for example:

/sphenix/tg/tg01/bulk/dNdeta INTT run2023/data/simulation/ana.399/EP0S/fullSim

/mag0ff /detectorAligned/dstSet_00000

All simulations appear in the directory /sphenix/tg/tg01/bulk/dNdeta_INTT_ru
n2023/data/simulation/ then subfolders define the software stack, generator, whether
the GEANT4 simulation of sSPHENIX was enabled, whether the detectors were aligned in
GEANT4 and what DST revision you're looking at. DST revisions are automatically handled
when the job launches. If a DST already exists with the same settings in storage then the new
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DST is placed into a folder with one higher value that the latest stored file, so if an identically
tagged file exists dstSet_00000 then the new file will go to dstSet_00001. Further, while a
DST is being produced, it will exist in a subfolder called inProduction and is automatically
moved to the top folder when the job completes. This allows analysers to immediately use
DSTs while condor is still producing the rest of the data set without worrying about using
unreadable files.

The second method to store production data involves a text file that is written along side
the DST. This text file contains all the production information as well as the seeds used for
that production so each DST can be exactly recreated if needed. The form of the text file is

Listing 1: Example metadata file

Your production details

Production started: 2024/01/22 16:47

Production Host: spooll068.sdcc.bnl.gov
Folder hash: 281626f

Software version: ana.399

Output file: dNdeta—sim—EPOS—000—-00000.ro0t
Output dir: /sphenix/tg/tg01/bulk/dNdeta INTT run2023/data/simulation/
ana.399/EPOS/fullSim /magOff/detectorAligned
Number of events: 400

Generator: EPOS

fullSim: true

turnOnMagnet: false

idealAlignment: true

Seeds:
PHRandomSeed : : GetSeed () seed: 2677558228
PHRandomSeed : : GetSeed () seed: 67770606
PHRandomSeed : : GetSeed () seed: 2482422915
PHRandomSeed : : GetSeed () seed: 969717365
PHRandomSeed : : GetSeed () seed: 4082588279
PHRandomSeed : : GetSeed () seed: 1008239460
PHRandomSeed : : GetSeed () seed: 280233077
PHRandomSeed : : GetSeed () seed: 527826680
PHG4MvtxDigitizer random seed: 527826680
PHRandomSeed : : GetSeed () seed: 3802774622
PHG4InttDigitizer random seed: 3802774622
PHRandomSeed : : GetSeed () seed: 1263913743
SEEDS: PHRandomSeed :: GetSeed () seed: 2677558228
PHRandomSeed : : GetSeed () seed: 67770606
PHRandomSeed : : GetSeed () seed: 2482422915
PHRandomSeed : : GetSeed () seed: 969717365
PHRandomSeed : : GetSeed () seed: 4082588279
PHRandomSeed : : GetSeed () seed: 1008239460
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PHRandomSeed : : GetSeed () seed: 280233077
PHRandomSeed : : GetSeed () seed: 527826680
PHG4MvtxDigitizer random seed: 527826680
PHRandomSeed : : GetSeed () seed: 3802774622
PHG4InttDigitizer random seed: 3802774622

mdbsum :
5a3910480142d71865188235bce6bbal

The last method to maintain the metadata is the use of a storage node directly in the
DST. This means that even if the DST is downloaded and renamed then a user can access
this node and print out the production details, including the seeds.

The simulation framework along with the metadata class is stored on github. Before each
production is launched, the changes to the repository are pushed to github as part of the
metadata information is to record the git hash of simulation framework so that this can be
checked out to exactly reproduce any DST at a later date. The framework can be found at
https://github.com/cdean-github/dNdeta_sPHENIX_simulations/.

The beampipe, MBD, MVTX, and INTT were simulated using GEANT4 with modified
geometry based on a preliminary alignment study [44, 45]. In particular, significant effort
was made to update the INTT GEANT4 geometry according to the survey measurements,
as detailed in Appendix B.

The three INTT calibrations — the hit BCO, hot/dead/cold channel masks, and the
analog-to-digital conversion map — are centrally maintained in the sPHENIX Calibration
Database. These calibrations are accessed by the simulation setup through the relevant
production tag (Table 2).

4.2 Central simulation production

Table 5 summarizes the SPHENIX central production simulation samples used in this anal-
. 3
ysis.

Table 5: Summary of simulation sample with production and CDB tag.

Generator Production tag CDB tag Special configuration

run 26, type 4, -no -
HIJING » WP i b

run 27, type 4, -nop Enhanced strangeness by 40%

MDC2
EP0S4 run 26, type 25, -nop -

AMPT run 26, type 24, -nop -

3Table 5 will be updated and completed when all the requested simulation samples are available.
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x» 4.3 Primary charged hadron definition

s In line with previous measurements at RHIC and LHC, the primary charged-hadrons are
286 defined as prompt charged-hadrons and decay products of particles with proper decay length
27 T < 1cm, where ¢ is the speed of light in vacuum and 7 is the proper lifetime of the particle.
28 'This definition excludes contributions from prompt leptons, decay products of particles with
20 longer lifetimes, and secondary interactions. The selection criteria corresponding to the
200 technical definition of primary charged hadrons are as follows:

201 1. The particle is a primary PHG4Particle, or equivalently, a final-state HepMC::GenParticle

202 without a decay vertex, with a status of 1. Proper Lorentz rotation and boost are ap-
203 plied to account for the beam crossing and shifted vertex. This criterion excludes
204 particles from secondary interactions.

205 2. The particle is stable.
206 3. The particle has a charge # 0.

207 4. The particle is classified as a meson or baryon.

208 Contributions from charged leptons to the tracklet counts are expected to be negligible.
20 Figure 14 presents the number of charged particles, strange particles (which undergo weak
w0 decays), and charged leptons across 200 HIJING simulation events. Charged leptons are
s nearly two orders of magnitude less abundant than strange particles. Consequently, any
52 variation from including charged leptons is negligible compared to the significantly larger
s effect of strangeness decays, for which a systematic uncertainty will be assigned.

—— Number of charged particles
—— Number of strange particle (K A), Inl<1.5
—— Number of leptons (e, 1), |r]|<1 5

Ly
i AR ﬂ
~MMMM W

100 120 140 160 180 200
Event index

Figure 14: The number of charged particles, strange particles (which undergo weak decays),
and charged leptons across 200 HIJING simulation events.
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4.4 Z-vertex reweighting

Figure 15 shows the vertex Z position reconstructed by INTT tracklets, detailed in Sec-
tion 6.4.3. The data-to-simulation ratio is used as a per-event weight and applied to the
simulation, ensuring the vertex 7Z position matches that observed in the data. For events
with —10cm < vtxy < 10 cm, the reweighting factors are consistent with 1.
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Figure 15: Distribution of the vertex Z position reconstructed by INTT tracklets in data
and simulation (top panel), and the ratio of data to simulation (bottom panel).

5 Toolkit

The following list summarizes the analysis tools:

e dNdEta FUN4ALL ntuplizer: This FUN4ALL analysis module reads data and sim-
ulation DSTs and produces analysis ROOT trees. The module can be found at
https://github.com/sPHENIX-Collaboration/analysis/tree/master/dNdE
ta_Run2023/dNdEtalINTT, while the corresponding FUN4ALL macros could be found
at https://github.com/sPHENIX-Collaboration/analysis/tree/master/dNdEta
_Run2023/macros.

e dNdEta analysis codes: The analysis codes perform the offline beamspot reconstruc-
tion, per-event vertex Z position reconstruction, tracklet reconstruction and counting,
correction factor calculation and application, systematic uncertainty, and plotting util-
ities. The codes can be found at

— The PHOBOS-approach analysis: https://github.com/sPHENIX-Collaborati
on/analysis/tree/master/dNdEta_Run2023/analysis_INTT_CW/NewCode2024
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— The CMS-approach analysis: https://github.com/sPHENIX-Collaboration/a
nalysis/tree/master/dNdEta_Run2023/analysis_INTT

6 Analysis

6.1 Centrality

The centrality determination used in this analysis was taken from the MBD and ZDC in-
formation. The sPHENIX Event Plane Detector (sEPD) was operational, but was not in-
cluded in the current centrality definition. The information was taken from the centralised
sPHENIX production area using the tags listed in table 2 and was calculated according to
the procedure documented by Dan Lis and Jamie Nagle [43]. In this analysis, we have access
to

the MIN. BIAS trigger decision,

e the event number,

e the clock value,

e the front end module (FEM) clock value,
e the centrality,

e the Z vertex as determined by the MBD,
e the MBD north and south charge sums,
e the total MBD charge

the MBD north/south charge asymmetry.

By requiring the MIN. BIAS and the scaled trigger bit, the centrality determination is
stable up to the maximal centrality value derived, as can be seen in Figure 16. The centrality
compared to the MBD Z vertex is shown in Figure 17, where no correlation between the two
variables is found.
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Figure 16: Centrality determined for run 54280 after applying the MIN. BIAs and the scale
trigger bit.
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Figure 17: Centrality determined for run 54280 after applying the MIN. BIAs and the scale
trigger bit, compared to the MBD-determined Z-vertex.
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6.2 Cluster reconstruction

After the extraction of INTT hits from the event DST, the next step in reconstruction for
this analysis is the formation of clusters of adjacent hits. These clusters ideally represent
the full extent of the deposit of energy from a particular charged particle passing through a
layer of the INTT, and contain information about that deposit’s location, timing, size, and
energy.

6.2.1 INTT clustering algorithm

The clustering of hits in the INTT is implemented using an adjacency graph, where each hit
is represented as a node, and two nodes are connected by an edge if their corresponding hits
are adjacent. The clusters then correspond to the connected components of this graph. Full
implementation details can be found in https://github.com/sPHENIX-Collaboration/c
oresoftware/blob/master/offline/packages/intt/InttClusterizer.cc.

The characteristics of the clusters formed using this method depend on the criteria by
which two hits are determined to be “adjacent.” Several definitions were considered:

1. Standard clustering: two INTT hits are adjacent if and only if they are in the same
column (corresponding to the same coordinate in z) and their edges touch in the ¢
direction. This is the current default definition in the INTT clusterizer.

2. Standard Z-clustering: two INTT hits are adjacent if and only if either the corners
or the edges of their corresponding strips touch. In other words, hits are adjacent if
and only if their row and column coordinates both differ by at most one. This is the
definition currently used in the MVTX clusterizer and can be enabled in the INTT
clusterizer.

3. Modified Z-clustering: two INTT hits are adjacent if and only if the edges of their
corresponding strips touch. In other words, hits are adjacent if and only if their row
and column coordinates differ by at most one, excluding the case where both differ by
exactly one. (See Figure 18 for an example of how this differs from definition 2.)
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Figure 18: Illustration of one case in which the definitions of adjacency lead to differing
results. In the top plot, the second definition of adjacency (including strip corners) is used,
in which one cluster, outlined here in red, is formed. In the bottom plot, the third definition
of adjacency (excluding strip corners) forms two clusters.

A comparison of the performance of each of these adjacency definitions required the
development of a benchmark for clustering performance in simulation.
6.2.2 Clustering performance benchmarks

To objectively compare the effects of changes to the INTT clustering algorithm and its
configurable settings, a method for evaluating the performance of the INTT clusterizer on
simulated hits was developed. This method evaluates how well a clustering algorithm repli-
cates the following two features of an ideal clustering algorithm:

1. All of the hits created by a given truth particle within a given layer are contained in
exactly one reconstructed cluster, and

2. Each reconstructed cluster contains the hits created by exactly one truth particle.
These two features suggest two corresponding histograms as figures of merit:
1. The number of reconstructed clusters associated with the hits generated by a given

truth particle, and
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2. The number of truth particles associated with the hits contained in a given recon-
structed cluster.

For an ideal clustering algorithm with a detector with an extremely fine-grained sensor
layout, all entries in both histograms should be concentrated precisely at 1. Any deviations
from this ideal scenario arise due to the sensor’s granularity and potential limitations in
the clustering algorithm. Given a fixed sensor layout, the relative differences between these
histograms serve as a direct measure of clustering performance. Notably, if the clustering
efficiency is imperfect, the number of clusters per truth particle will be less than one. In
contrast, if the segmentation is too coarse or the multiplicity is too high, the number of truth
particles per cluster will exceed one.

In order to make this comparison maximally compatible with the way that the INTT clus-
terizer operates, the reconstructed hits associated with each truth particle were grouped by
TrkrHitSet, and the subsequent comparison with reconstructed clusters occurred only within
the relevant TrkrHitSet. The method outlined here is implemented in the dNdEtaINTT
FUN4ALL ntuplizer.

The results of this comparison, for hits simulated using the HIJING generator, applied to
all three definitions of hit adjacency, are shown in Figure 19.
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Figure 19: Clustering performance comparison, differentially in occupancy, normalized
within occupancy bins.

Since the latter two definitions are seen to have a multiplicity-dependent performance,
they will not be used for further portions of this analysis; subsequent sections proceed with
the standard definition of adjacency in the default INTT clusterizer, which fixes the INTT
cluster size in the Z-axis to be 1. It is worth noting that the clustering algorithm implemented
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in MVTX follows the standard Z-clustering definition, where diagonally adjacent pixel hits
are included as part of a cluster.

6.2.3 Background cluster removal /mitigation

A cluster ADC threshold of > 35 was applied to exclude single-hit clusters with minimal hit
ADC values, as those clusters are assumed to be predominantly noise. Figure 20 shows the
distribution of cluster ADC for clusters with a ¢-size of 1. The dNg,/dn measurements with
and without this cluster ADC requirement were compared, and the variation in the dNg, /dn
distribution was quoted as a source of systematic uncertainty.
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Figure 20: The cluster ADC distribution for clusters with a ¢-size of 1.

6.2.4 Cluster distributions

The basic distributions of the clusters are shown in this section. Figure 21 shows the compar-
isons of the number of clusters in the INTT inner layer between data and HIJING simulation.
The distributions shown are normalized to the number of events in data.
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Figure 21: The number of clusters in the INTT inner (left) and outer (right) layer in data
and HIJING, EP0S4, and AMPT simulations.

Figure 22 shows the cluster ¢ (left) and n (right) distributions in data and simulations,
where ¢ and 7 are calculated with respect to the event vertex.
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Figure 22: The cluster ¢ (left) and 7 (right) distribution in data and simulations.

Figure 23 shows the cluster ¢-size (left), defined as the number of strips in the ¢ di-
rection, and ADC (right) distribution in data and simulation. Discrepancies between data
and simulation are seen in both variables. A dedicated study and an attempt to reproduce
data distributions in simulation can be found in Appendix D. The impact of large ¢-size
clusters on tracklet reconstruction is studied by comparing the ¢-sizes of constituent clusters
in tracklets, detailed in Sec. 6.5.2. The discontinuity observed in the cluster ¢-size around 50
and in the cluster ADC near 10x 103 can be explained as follows: If a cluster has a sufficiently
large energy deposit to extend over a range in the ¢ direction, it is more likely to span two
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or more strips in the Z direction (i.e., with a cluster Z-size > 1). However, since Z-clustering
is disabled by default, as explained in Sec. 6.2.1, this introduces a truncation effect in both
variables at large values.
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Figure 23: The cluster ¢-size (left) and ADC (right) distribution in data and simulations.

The two distinct spikes observed in the distributions of cluster ¢-size (¢-size = 43 and 46)
and cluster ADC were investigated and found to be partially caused by the chip saturation
issue. Figure 24 shows a cutoff in the tail of the distribution of the number of hits recorded by
a single chip within one distinct hit BCO. This indicates that a chip can record a maximum
of 73 hits per distinct hit BCO within the 60-BCO INTT open_time. Any hits from the
given hit BCO that are not received by the INTT FELIX server within this 60-BCO window
are dropped and cannot be recovered.

An example, illustrated in Figure 25, demonstrates this issue. In this scenario, 100 out
of 128 channels on a chip are fired. The chip reads out these hits and sends them to the
INTT ROC, which forwards them to the INTT FELIX server. When the FELIX server
detects the first hit in the given hit BCO, it initiates the 60-BCO open_time window to
collect subsequent hits from the same hit BCO. As mentioned above, only a maximum of
73 hits can be recorded within this window, meaning the remaining 100 — 73 = 27 hits in
this distinct hit BCO only arrive at the FELIX server after the predefined window. These
27 hits are unrecoverable and consequently dropped.

A distinct pattern is observed in the hit map of a chip experiencing saturation, as shown
in Figure 26. When chip saturation occurs, it often results in a cluster with a large number
of fired channels, while nearby channels fire in an alternating manner, meaning the channels
with signals are evenly spaced (referred to as "zebra-like crossing”). Additionally, these
clusters with a high number of fired channels most commonly have a cluster ¢-size of 43
or 46 and predominantly appear at the edge of a chip. It remains unclear why the chip
saturation issue specifically, or coincidentally, manifests at ¢-size 43 or 46.

Figure 27 shows three pronounced spikes in the cluster ¢-size distribution for saturated
chips: the spike at 2 corresponds to the thickness of the alternating channels, while the
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s spikes at 43 and 46 correspond to clusters with a large number of fired strips. Based on this
ss6  analysis, we conclude that the two spikes at ¢-size 43 and 46 are at least partially attributed
«s7 to chip saturation.
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Figure 24: The number of hits of one chip in single BCO of one FUN4ALL event.
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Figure 25: The illustration of INTT chip saturation issue.
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Figure 27: The cluster ¢ size distribution of the saturated chips.

The baseline analysis applies a cluster ¢-size cut < 40, which retains all clusters in
simulation but excludes clusters with a large ¢-size in data. The analysis is repeated without
the cluster ¢-size requirement and the resulting variation in the measured dNg,/dn is used
as a corresponding systematic uncertainty.

6.3 Tracklet analysis overview

Tracklets are defined as combinations of two clusters with a small angular separation in
two detector layers. Clusters originating from a particle track associated with the event
vertex exhibit small differences in pseudorapidity (An), azimuthal angle (A¢), and angular
separation (AR). These three key quantities characterizing tracklets are defined as follows:

AT} = Tlinner — Tlouter (2)
A¢ - Cbinner - ¢0uter (3)
AR = V/(An)? + (Ag)? (4)
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Here, Ninner(outer) aNd @inner(outery represent the pseudorapidity and azimuthal angle of the
cluster in the inner (outer) layer of the INTT, calculated with respect to the event vertex.
Both vertex reconstruction and tracklet counting utilize the fact that tracklets associated
with particles originating from the event vertex produce a coincidence peak in the An, Ag,
and AR distributions. These processes are further detailed in the following subsections.

6.4 Vertex reconstruction using tracklets

The vertex reconstruction for the baseline tracklet analysis consists of two steps. The first
step determines the beamspot position, defined as the average vertex position in the trans-
verse plane over multiple events (v, and v, ), while the second step reconstructs the per-event
z-vertex position. The transverse vertex position varies by O(100)um, which is several orders
of magnitude smaller than relevant length scales such as strip sizes and the radial distance
between the INTT ladder and the beamline. In contrast, the z-vertex variation is signifi-
cantly larger, approximately 5cm. Event-by-event reconstruction of the z-vertex preserves
fluctuations and maintains the sensitivity of the measurement as a function of 7.

Two independent methods have been developed for beamspot determination, yielding
consistent results.

6.4.1 Beam spot determination - DCA-¢ fitter

The distance-of-closest-approach (DCA)-¢ fitter closely follows Ref. [46]. This approach
takes advantage of the fact that, for tracks originating from a beamspot at (zg, o), the
distance of closest approach to the origin follows a sinusoidal pattern with respect to the ¢
coordinate of the point of closest approach (PCA) to the origin (¢pca):

DCA(¢pca) = Ry cos(¢dpca — ¢o)

where Ry = /22 + y2 is the beamspot radial coordinate and ¢y = arctan (z—g) is the beamspot
¢ coordinate. Plotting the tracklet DCA and ¢pca, as shown in Figure 28, and fitting the
resulting sinusoidal ridge allows for the extraction of the two fit parameters Ry and ¢y.

Data and simulation events are divided into sub-samples, and beamspot reconstruction
is performed on events in each sub-sample with a cluster multiplicity of 20 < Nusters < 350.
For each sub-sample, tracklets, constructed by pairs of clusters that pass the cluster ADC cut
and with a A¢ < 0.122 radians, are selected. Then, the sinusoidal correlation is extracted by
profiling the noise-subtracted tracklet DCA and ¢pca distribution, constructed by identifying
the peak DCA for each slice of ¢ of the point of closest approach, ¢pca and removing values
less than 99.5% of this peak DCA. A graph is created with the cleaned sinusoidal correlation
and fitted with the cosine function to extract Ry and ¢y. Figure 28 and 29 show the tracklet
DCA and ¢pca distribution in one sub-sample, before the noise removal on the left and after
on the right with the graph and cosine function fit, for simulation and data respectively. The
final beamspot position is the average of PCA over all sub-samples.
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Figure 28: The DCA-¢ method on simulation events. (Left) without noise removal; (right)
after noise removal and the graph with the cleaned sinusoidal correlation and the fit.

g g. 1_ ; 70
< c 98 60
o © 06
‘g § 0.4 50
3 z
b < 02 40
(@) O -
[a) a 0
~0.2F 30
-0.4 20
-0.6
10
-0.8
bl e
L 1 2 3 0
®,, [rad] ., [rad]

Figure 29: The DCA-¢ in data. (Left) without noise removal; (right) after noise removal
and the graph with the cleaned sinusoidal correlation and the fit.

Figure 30 shows the reconstructed beamspot position as a function of the sub-sample in-
dex for simulation events, consistent with the simulated truth vertex position (v, pirth) =
(—0.022,0.223) cm. Figure 31 shows the beamspot position as a function of the median of
INTT BCO of the sub-sample in data and indicates that the beamspot position is stable

throughout run 54280.
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Figure 31: The beamspot position as a function of the median of INTT BCO of the sub-

sample.

6.4.2 Beam spot determination - Iterative quadrant search and 2D tracklet fill

This approach involves two methods to reconstruct the averaged beam spot position. The

derived final beam spot is used in the analysis of the combinatoric method.

The procedure of iterative quadrant search is detailed as follows and illustrated in Fig-

ure 32:

1. Events are divided into sub-samples, each containing 5000 events.

2. To make sure the sufficient number of tracks reconstructed while minimizing the com-
binatorial background, only the low-multiplicity events with the number of clusters

more than 20 and less than 350 are included.

3. Within each event, start with a cluster in the inner layer and loop through the clusters
in the outer layer. Cluster pairs with A¢ < 0.122 radian are kept. This step is repeated

for all events in a sub-sample.
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. A square of size 8 x 8 mm? centered at (z,y) = (0,0) is defined. The corners of the

square are considered as vertex candidates. For each candidate, the DCA and A¢ of
the cluster pairs are evaluated. An example 2D histogram of the inner cluster ¢ versus
DCA and ¢ versus A¢ for one corner is shown in Figure 33.

. For each corner, background removal is performed to exclude irrelevant entries. After

background removal, the histograms are fitted with a Polynomial-0 function, as shown
in Figure 34. A Polynomial-0 function is used because DCA and A¢ show no correlation
with ¢ when tested against the true vertex, as demonstrated in Figure 35. This process
is repeated for all four corners of the square.

. The quadrant containing the corner with the smallest fit errors is selected. Steps 4

and 5 are repeated using a new square formed within the chosen quadrant, with its
dimensions halved relative to the previous square.

. The process is repeated until the size of the square reaches 30 x 30 um?, comparable to

the spatial resolution of INTT strips. The v, and v, for the sub-sample are calculated
as the average positions of the corners and the center of the square from the final
iteration.

. The final values of v, and v, are obtained by averaging the v, and v, values across all

sub-samples.

Figure 32: Iterative quadrant search
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Figure 34: DCA (left) and cluster A¢ (right) as a function of inner cluster phi, post back-

ground removal.
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Figure 35: DCA (left) and cluster A¢ (right) as a function of inner cluster phi where the
true vertex is taken as the tested vertex.

A closure test is performed in simulation, generated by HIJING, with the truth vertex posi-
tion set at (v,, v,) = (—0.02213 cm, 0.2230 cm). A vertex of (v, v,) = (—0.02159 cm, 0.2237 cm)
is obtained from the method, in good agreement with the assigned position.

The 2D tracklet fill method complements the iterative quadrant search. The procedures
are described as follows:

1. Define the dimensions and center of a finely-binned 2D histogram. The central point is
determined by the vertex XY position acquired through Approach 2, which is (-0.02159
cm, 0.2237 cm) in the validation test. In the standard configuration, this corresponds
to a 0.25cm x 0.25cm square with bin sizes of 50pum x 50wm.

2. Populate the trajectories of the combinations outlined in step 1 of Approach 2 into the
2D histogram. The example is shown in Figure 36.

3. Remove the background of the histogram.

4. The v, and v, are obtained by taking the averages on both axes of the histogram, as
shown in Figure 36. The vertex position (-0.02188 cm, 0.2232 cm) is obtained.
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Figure 36: The 2D histogram filled by the trajectories of combinations before the background
removal (left) and after background removal (right). The red full cross mark represents the
reconstructed vertex in the transverse plane.

Figure 37 shows the full closure test of the methods in the simulation. The two methods
agree in all the sub-samples. And the stability of the vertex X and Y positions in the
data is evaluated. Figure 38 shows the average vertex X and Y positions calculated every
five thousand events as a function of the averaged event ID in data, measured by the two
approaches. The discrepancy between the measured vertices from the two approaches can be
attributed to detector misalignment, as discussed in Section 8.1.1. The observed consistency
in the vertex positions throughout the run indicates stable performance, supporting the
adequacy of reconstructing the tracklets based on the average beam spot. In data, the final
beam spot (v, v,) = (—0.02207 cm, 0.2230 cm) was obtained and used in the analysis of the
combinatoric method.
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Figure 37: In simulation, vertex positions averaged over every five thousand events as a
function of averaged event index for X position (left) and Y position (right).
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Figure 38: In data, vertex positions averaged over every five thousand events as a function
of averaged event index for X position (left) and Y position (right).

6.4.3 Per-event z-vertex reconstruction

The lengths of the INTT strips, either 1.6 or 2.0 cm, inherently limit the precision of the
z-vertex position. To address this, two reconstruction methods have been developed, both
leveraging the fact that a single pair of inner and outer clusters defines only a range within
which the vertex could potentially lie.

The first method, adopted in the analysis of the closest-match method, is described
step-by-step below:

1. The cluster ¢ is calculated and updated relative to the beamspot coordinates v, and
Uy.

2. For each cluster in the inner layer, loop through the clusters in the outer layer. Cluster
pairs that satisfy A¢ < A¢ey and DCA < DCA_y, are retained, where DCA (Distance
of Closest Approach) is defined as:

DCA:\m-vx—vy+b\ (5)
m? + 1

m = Youter — Yinner (6)

Louter — Linner

b= Yinner — M * Tinner (7)

Here, Zouter(inner) @0d Youter(inner) are the X and Y coordinates of the clusters in the outer
(inner) layer. Repeat this process for all clusters in the inner layer.

3. Cluster pairs that pass the A¢ and DCA requirements form z-vertex candidates. Fach

candidate defines a range bounded by two edges, v298°! and v°48°? which are calculated
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by linearly extrapolating from the paired clusters to the beamspot (v,,v,). These edges
are defined as:

zedgeQ Zedgel
edgel __ _edgel outer ~ “inner
v, = Zinner — Pinner (9)
outer — Pinner
Zedgel ZedgeZ
edge2 __ _edge2 outer ~ “inner
v, = Zinner — Pinner * - (10)
outer — Pinner
_ 2 2
Pinner = \/(xinner - Um) + (yinner - Uy) (11)
_ 2 2
Pouter — \/(xouter - 'Uw) + (youter - Uy) . (12)

4. The z-vertex candidate range is divided into fine segments, which are filled into a
one-dimensional histogram. Examples of these histograms are shown in Figure 39.

5. The histogram is fitted with a combination of a Gaussian and a constant offset. The
mean value of the Gaussian fit is taken as the reconstructed z-vertex position, vtx..
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Figure 39: The histogram of segments in simulation (left) and in data (right).

The parameters A¢e,s and DCA, are optimized by scanning across ranges of A¢ and
DCA to achieve the best vertex reconstruction resolution. Figure 112 in Appendix F illus-
trates the vertex reconstruction resolution as a function of A¢. and DCA.y. The final
selection criteria are determined to be A¢.,; = 0.000523 radians and DCA. = 0.15cm for
the analysis.

To quantify the vertex reconstruction bias and resolution, events are subdivided by cen-
trality class. For each centrality interval, the difference between the reconstructed event
vertex and the truth event vertex is fitted with a Gaussian distribution. The Gaussian fit’s
mean value quantifies the reconstruction bias, while the width represents the resolution. Fig-
ure 40 shows the bias and resolution of the vertex reconstruction as functions of centrality.
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sos The resolution ranges from 0.188 cm for the most central events to 1.53 cm for the most pe-
so6 ripheral events, while the bias remains below 0.02 cm across all centrality classes. Gaussian
sov fits for all centrality classes are shown in Figure 115 in Appendix F.
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Figure 40: (Left) Z-vertex reconstruction bias as a function of centrality; (Right) z-vertex
reconstruction resolution as a function of centrality.

598 The vertex reconstruction efficiency, €greco. vertex; defined in Equation 13, is shown as
s0 a function of centrality interval and vtxI™ in Figure 41, with a loose quality cut of
oo |A(vtxtee vixTuh)|< 120 cm. This cut value is determined in accordance with the MBD

en  Z-vertex criteria in the MIN. B1AS definition.

Number of events with 1 reco. vertex with |A(vtxRe vtx™™)|< 120 cm

zZ )

€ vertex — 1
Reco. verte Number of events with 1 truth vertex

(13)
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Figure 41: The vertex reconstruction efficiency as a function of centrality and vtxIruth,

602 Figure 15 in Section 4.4 presents the reconstructed z-vertex position in both data and
03 simulation. The reconstructed vertex distributions for centrality intervals up to 70% are
o4 consistent, as shown in Figure 42.
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Figure 42: Reconstructed z-vertex position in different centrality intervals in data.

The reconstructed z-vertex distribution in both data and the simulation sample is fitted
with a double-sided Crystal Ball (DBCB) function, as defined in Equation 14, and shown
in Figure 43. In simulation, the fit results, particularly the mean and sigma values, are
consistent, within uncertainties, with the initial vertex position settings. This confirms that
the vertex reconstruction does not introduce a systematic bias in the vertex position.

The DBCB function is defined as:

(67% (z;p,)Q
DBCB(z) = ¢ /" (@)™

)

(IH—F(Z—_,i

1

Cha-peet

[

(

ﬂ%H+ff5‘

, —ar, <
Z;#)Q , ] < —ay,
%)2 ) Z_;H Z ap
(14)

where pu is the peak position of the Gaussian component, a;, and ay define the transitions
to the power-law behavior on the low-z and high-z sides, and n; and ny are the exponents

of the power-law tails.
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Figure 43: Double-side Crystal Ball fit to the reconstructed vertex in data (left) and simu-
lation (right).

614 The INTT tracklet z-vertex reconstruction is compared to the MBD z-vertex calcula-

e1s  tion, as shown in Figure 44, using events from the 0-70% centrality intervals. The strong
16 correlation indicates an agreement between the two independent measurements.
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Figure 44: A comparison between the INTT tracklet z-vertex reconstruction and the MBD
vertex determination.

617 The second approach, detailed in a separated internal note [47] and applied in the analysis
s1s  of the combinatoric method, constructs vertex candidates as trapezoidal shapes by assuming
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a uniform distribution of particle hit positions along the Z-axis of a strip. Key quality checks
are presented in Appendix E.1.

6.5

Tracklet reconstruction

Two approaches are developed for the tracklet reconstruction.

6.5.1 The combinatoric method

In this approach, one step prior to the tracklet reconstruction, the INTT column uniformity
is checked. The procedures are described as follows:

1.

INTT, the two-layer barrel strip tracker, can be considered as 26 chip rings, as illus-
trated in Figure 45. There are 56 columns in one chip ring.

. In data and simulation, and in one chip ring, the number of clusters of each column

corrected for strip length and its ¢ acceptance, is accumulated, and normalized by the
column with highest count, as shown in Figure 46.

The corrected multiplicity of each column in data is divided by that of in simulation
afterwards, as shown in the right plot of Figure 46. Most of the columns are with
the ratios around 1 while a few of columns is with the ratio away from 1, which
indicates the disagreement in the multiplicity uniformity between data and simulation.
Note that the normalization is performed in each chip ring, and the ratio is calculated
column by column. Therefore, this method is generator model and vertex Z distribution
independent. The only assumption made is the uniformity of the particle emission along
the azimuthal angle.

The steps 2 and 3 are repeated for all the chip rings, and the result is shown in
Figure 47. The distribution peaked at one indicating a good column uniformity.

The columns with the ratios outside the range of 0.8 to 1.2 are discarded in both data
and simulation. The map of the columns used in the following analysis is shown in
Figure 48.

The column uniformity check serves as a direct tool to confirm the consistency of the map
applied in both data and MC, and evaluate the performance of the data-driven bad channel
identifier. The left plot of Figure 47 shows that the multiplicity ratios of all the columns are
between 0.8 to 1.2, ensuring that the bad channels are all identified and they are masked
in the analysis in both data and simulation. There is no additional column masked by this
check.
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Figure 48: The column map used in the following analysis.
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The combinatoric method allows an inner cluster to be paired with multiple outer pairs.

The procedure are detailed as follows:

1. The cluster n and ¢ are updated based on the reconstructed event vertex.

2. In an event, all possible tracklets are formed by pairing one cluster in the inner barrel

and one cluster in

the outer barrel.
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Radius

The extrapolated possible vertex 7Z range of a cluster pair not able to link to the
reconstructed v, is discarded, as demonstrated in Figure 49. Such requirement is
equivalent to a cut |An| < 0.25, as shown in the right plot of Figure 49. The 7 of the
cluster pair satisfied the requirement is given by the average of the two cluster 7.

Fill the A¢ of the pair into the corresponding one-dimensional A¢ histogram according
to its n, and centrality and reconstructed v, of the event.

Repeat the steps 3 and 4 for all the combinations and step 2 for all the events.

After the loop, stack over the A¢ distributions for each tracklet n bin according to
the selected region, as the example shown in left plot of Figure 50. The statistic can
therefore be increased.

The A¢ distribution is composed of two components, the entries of the signal and
the contribution of combinatorial background due to incorrect pair formations which
results in a bulk underneath the signal. The combinatorial background is estimated
by rotating the inner-barrel clusters by 7 in ¢ angle, as shown in the right plot of
Figure 50. The signal is extracted by the subtraction of the two distributions, as
shown in Figure 51.

The number of tracklets of a given 7 region is determined by the entries of the sub-
tracted A¢ distribution within the region of 0.021 radians for baseline.
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The distribution of average number of reconstructed tracklets per event is shown in
674 Figure 52.

673
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ers 6.5.2 The closest-match method

e76 ' T'his method involves a 3-step process:

677 1. The cluster n and ¢ are updated based on the reconstructed event vertex (This step is
678 identical as Step 1 in the PHOBOS approach of tracklet reconstruction).

679 2. In an event, tracklets are formed by pairing one cluster in the inner barrel and one
680 cluster in the outer barrel. Combinations with AR (as defined in Eq. 4) less than 0.5
681 are kept and sorted by AR (Note, while the initial pairing step resembles Step 2 in the
682 combinatoric method, the subsequent steps differ significantly).

683 3. If multiple matches exist for a cluster, the pair with the smallest AR is selected to
684 form the final set of reconstructed tracklets.

685 Figure 53 and 54 show the number of reconstructed tracklets, tracklet ¢, tracklet 7,

s tracklet Ag, tracklet An, and tracklet AR.

6
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Figure 54: The tracklet A¢ (top left), tracklet An (top right), and tracklet AR (bottom).

Figure 55 compares the ¢-sizes of constituent clusters in tracklets, where the number
of tracklets in which both constituent clusters have a ¢-size of 43 or 46, as well as those
where either constituent cluster has a ¢-size of 43 or 46 are listed in Table 6. Despite the
unexpectedly large number of clusters with ¢-sizes of 43 and 46, the results indicate that
only a negligible fraction of tracklets are formed by these large ¢-size clusters.
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Table 6: The number of tracklets in which both constituent clusters have a ¢-size of 43 or
46, as well as those where either constituent cluster has a ¢-size of 43 or 46.

Category Count Fraction (%)
Total number of tracklets 2.04x107 -

Number of tracklets in which both constituent 190 9.32%x1076
clusters have a ¢-size of 43 or 46

Number of tracklets in which either con- 1.70x10° 8.35%x1073

stituent cluster has a ¢-size of 43 or 46
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Figure 55: The ¢-size of constituent clusters on tracklets.

« ¢ Correction factors

s3 Correction factors are applied to correct the reconstructed tracklet spectra to the prompt
so4 charged hadron definition (Section 4.3), properly accounting for acceptance and efficiency.
ss The correction factors derived from the HIJING generator are used as the baseline for the
s0s final results.

607 The combinatoric and the closest-match methods differ in the tracklet reconstruction
es and counting. Consequently, as in the previous section, the correction factors are discussed
00 separately.
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7.1 The combinatoric method

Corrections considered in the combinatoric method are summarized here:

1. Column uniformity corrections: This performs as a column multiplicity uniformity
check after the bad channel masking in the level of cluster as described in 6.5.1.

2. Acceptance and efficiency corrections: This accounts for the discrepancies be-
tween the number of charged hadrons emitted from the collisions and the number of
the reconstructed tracklets, as described in Section 7.1.1.

7.1.1 Acceptance and efficiency correction

This correction accounts for the difference between the number of charged hadrons emitted
from the collisions and the number of reconstructed tracklets due to the acceptance and
geometry limit of INTT and inefficiencies. In the combinatorial method, the average number
of reconstructed tracklets per event is determined in different 7 bins using the full z-vertex
range of the analysis, as shown in Figure 56. The correction factors are then derived by
taking the ratio of the number of reconstructed tracklets per event to the number of charged
hadrons per event at the generator level in a given centrality interval. Figure 57 illustrates
these corrections for the 0-70% centrality interval. These ratios account for both acceptance
and efficiency effects. At mid-rapidity, the correction factor is approximately 90%, indicating
high reconstruction efficiency. The steep decline at large |n| is primarily due to the acceptance
limits of INTT, while the slightly lower correction at n = 0 results from geometric constraints.
Figure 58 shows the valid cluster pair multiplicity as a function of pair n and vtxz. The tilted
pointed-oval structures at n = 0 across all z-vertex range do not indicate dead acceptance
regions; rather, the resolution of tracklet n reconstruction in this region is poor, leading
to a near absence of reconstructed tracklets at n ~ 0. To ensure reliable reconstruction
efficiency,n bins with correction factors below 0.5 are excluded from the analysis. Correction
factors for different centrality intervals are provided in Appendix H.1.
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7.2 The closest-match method
7.2.1 Geometry difference between data and simulation

This correction accounts for the geometry difference between data and simulation. The
GEANT4 geometry is modified based on survey measurements, and the reconstruction ge-
ometry is built to match the implemented GEANT4 geometry. However, neither geometry
perfectly replicates the actual INTT geometry in the physical world. As a result, in simula-
tions, hits are generated and reconstructed using the same geometry, whereas in data, hits
are recorded by the detector at physical locations that differ from those reconstructed in the
software. This correction factor compensates for the effects of this discrepancy.
The correction is derived in the following steps:

1. Each event is assigned a random vertex Z position, uniformly sampled from -10 to 10
cm. Clusters n and ¢ values are updated accordingly, and ”fake” tracklets that do not
pass through gaps are reconstructed using the assigned vertex.

2. “Fake” tracklets are filled into a finely binned histogram in the (7, vtx,) space. Bins
containing at least one fake tracklet are set to 1, while empty bins are set to 0.

3. The bins of the histogram are weighted by the vertex distribution in data, and the
histograms are re-binned into coarser bins. The final correction factor is calculated as
the ratio of the simulation histogram to the data histogram.

Figure 59 shows the correction factor for geometric differences as a function of tracklet n
and the event vertex vtx,. The correction factor remains close to 1 throughout most of the
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acceptance range, with noticeable deviations near the edges. Regions where the correction
factor falls below 0.75 or exceeds 1.25 are excluded from the analysis, as marked by the red
lines. This correction factor does not depend on centrality, as it is purely driven by the
detector geometry.
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Figure 59: The geometric correction as a function of tracklet n and v,.

7.2.2 Acceptance and efficiency correction

The reconstructed tracklets are corrected for inefficiencies in the tracklet reconstruction. This
correction, referred to as the a factor, is defined as the ratio of the total number of primary
charged hadrons in the simulation to the number of uncorrected reconstructed tracklets. In
an ideal case where every primary charged hadron is reconstructed as exactly one tracklet,
the a factor would be 1. The « factor becomes greater than 1 when there are reconstruction
inefficiencies, as the number of reconstructed tracklets is lower than the number of primary
charged hadrons. Conversely, if fake tracklets are reconstructed that do not correspond to
primary charged hadrons, the a factor becomes less than 1.

To maintain good control over the correction factors, the o factor in each bin is required
to satisfy the following conditions :

1. 0<a<36

2. (=>5&&a<d) |l (a<2)
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where o, is the statistical error of the a. Regions in the (7, vtx,) phase space where the
a factor does not satisfy these criteria are excluded from the analysis. The acceptance
correction accounts for the fact that the detector does not have infinite phase-space coverage.
For instance, the length of the INTT ladders provides full acceptance only within |n|< 1.2 for
an event vertex at |vtx,|< 10 c¢m, while clusters with larger |n| cannot be recorded when the
event vertex is shifted. To derive this correction, a two-dimensional histogram of (1, vtx,) is
first filled with the number of tracklets per vtx, bin. A second two-dimensional histogram
of (n, vtx,) is then filled with the number of tracklets reconstructed in regions with a valid
a factor. The correction factor is calculated by taking the ratio of the two histograms and
projecting it into the n dimension.

Since both the tracklet reconstruction efficiency (inefficiency) and fake rate are multiplicity-
and centrality-dependent, the « factor is derived separately for each centrality interval. Fig-
ure 60 and 61 show the a factor as a function of 1 and vtx, and the acceptance correction
as a function of 7 for events in the centrality interval 0 — 3%, 30 — 35%, 65 — 70%, 0 — 70%.
Corrections in different centrality intervals can be found in Appendix H.
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Figure 60: The « factor: 0 — 3% (top left), 30 — 35% (top right), 65 — 70% (bottom left),
and 0 — 70% (bottom right).
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Figure 61: The acceptance correction: 0 — 3% (top left), 30 — 35% (top right), 65 — 70%
(bottom left), and 0 — 70% (bottom right).

- 8 Systematic uncertainties

s Systematic uncertainties considered in the two analyses are discussed separately below.

7 8.1 The combinatoric method

70 The following sources of systematic uncertainty are considered:

781 e Tracklet counting region. The tracklet counting region in the subtracted A¢ dis-
782 tribution is varied to |[A¢|< 0.018, |A¢|< 0.024 and |A¢|< 0.030. dN,/dn results for
783 different A¢ signal counting regions are shown in Figure 62.
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Figure 62: dNg,/dn results for different A¢ signal counting regions in different centrality
intervals: 0 — 3% (top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70%
(bottom right).

784 e Cluster ADC cut. The baseline analysis applies a cluster ADC threshold of > 35.

785 To assess its impact, the selection is modified by either disabling it or increasing the
786 threshold to > 50, and the maximum variation in the final dN, /dn result is quantified
787 as a systematic uncertainty. This variation is motivated by Figure 93, which shows
788 that cluster ADC values in data are discretized. Specifically, clusters with an ADC
789 of 35 are retained without an ADC cut, while the next discrete value of ADC = 45
790 justifies applying a threshold of ADC > 50. dN,/dn results for different cluster ADC
701 thresholds are shown in Figure 63.
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Figure 63: dNg,/dn results for different cluster ADC thresholds in different centrality inter-
vals: 0 — 3% (top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom
right).

792 e Cluster ¢-size cut. In the baseline analysis, a cluster ¢-size selection of < 40 is
703 applied. To assess its effect, the selection is removed, and the analysis is repeated.
794 The largest variation in the dN,/dn distribution is taken as a systematic uncertainty.
705 dNe,/dn results for different cluster ¢-size cuts are shown in Figure 64.
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Figure 64: dNg,/dn results for different cluster ¢-size cuts in different centrality intervals:
0—3% (top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom right).

e Run segmentation. The full set of data DST available is used as the baseline
dN,/dn, while the maximum variation observed in the the segments of first and second
4 million events is quoted as a systematic uncertainty. dNg,/dn results for different
run segments are shown in Figure 65.
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Figure 65: dN,/dn results for different run segments in different centrality intervals: 0 —3%
(top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom right).

e Geometry misalignment. This accounts for the remaining misalignment in data.
The method is described in Section 8.1.1.

e Event generator. The baseline analysis and correction factors are derived using
simulation samples generated with HIJING. Correction factors will also be derived using
samples from EP0S4 and AMPT, and the largest variation in the dNg,/dn distribution
will be quoted as a systematic uncertainty.

e Strangeness decay. Decays of strange particles can result in multiple clusters, lead-
ing to potential “double/multiple counting” in the dN,/dn measurement. The effect
is evaluated by varying the fraction of strange particles among primary particles in
simulation and assessing the impact on dN,/dn.*

4Uncertainties in the event generators and strangeness decays are not included in this version of the paper
draft. These uncertainties will be evaluated when the centrality divisions for EP0S4 and AMPT and the HIJING
with an enhanced strangeness simulations are available.
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8.1.1 The uncertainty due to the geometry misalignment

Figure 66 shows the A¢ of cluster pairs as a function of the inner cluster ¢ angle for one of
the subsamples in data, where the cluster ¢ angles have been updated based on the assigned
beam spot. While a generally flat correlation is observed, ladder-by-ladder fluctuations
persist in data. In contrast, no such fluctuations are seen in the simulation, as shown in
Figure 35. This is expected since the INTT geometry in GEANT4 and the offline geometry
are perfectly aligned in simulation and suggests that the observed fluctuations in data are
due to residual misalignment.

To quantify the impact of these residual misalignments, a strategy is implemented that
introduces random displacements to cluster positions in simulation, effectively simulating
the effects of misalignment in the data. The procedures are outlined as follows:

1. In one trial, introduce displacements in three dimensions (X,Y, Z) to each of 56 lad-
ders. The displacements are randomly and uniformly sampled between +250 um. The
clusters in a given ladder are therefore shifted from nominal positions systematically.

2. Process the first thirty thousand events through the full PHOBOS-approach analysis,
including event vertex and tracklet reconstructions.

3. Repeat the procedures 500 times to obtain the variation

sPHENIX Internal

o
o
@

A [radian]

-2 0 2
Inner cluster @ [radian]

Figure 66: The A¢ of cluster pairs as a function of inner cluster ¢ angle.

Figure 67 shows the distributions of the amount of the introduced offsets to each ladder
in all the trials in three dimensions. And the variation of the reconstructed beam spot is
shown in Figure 68. The standard deviations of the variation are around 230um in both
axes. Figures 69 and 70 show the variations of the reconstructed vertex Z and A¢ of valid
cluster pairs. The A¢ distribution is wider when the offsets are introduced to the offline
geometry, which is similar to what observed in data, as shown in Figure 54. Figure 71 shows
the variation in the number of reconstructed tracklets due to the random ladder offsets. The

64



834

835

maximum difference in dNg, /dn resulting from these variation is quoted as the systematic

uncertainty.
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Figure 67: The distributions of introduced offsets to each ladder
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Figure 68: The variation of the reconstructed vertex X (Left) and Y (Middle). Right: The
variation of which in 2D. The red cross mark corresponds to the reconstructed beam spot

without the offset introduction.
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Figure 70: The variation of the A¢ of the valid cluster pairs. The distribution in red is
without the offset introduction.
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Figure 71: The variation of number of reconstructed tracklets. The distribution in red is
without the offset introduction.

The relative variations of the considered systematic uncertainties to the nominal dNg, /dn
are shown in Figure 72 for different centrality intervals. The total uncertainties, calculated
as the quadrature sum of all individual contributions, are also presented. The systematic
uncertainties for different centrality intervals are presented in Appendix J.1.
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Figure 72: Systematic uncertainties in different centrality intervals: 0—3% (top left), 30—35%
(top right), 65 — 70% (bottom left), and 0 — 70% (bottom right).

a0 8.2 The closest-match method

sa1 ' The following sources of systematic uncertainty are considered:

842 e Tracklet reconstruction selection. The tracklet reconstruction selection is varied
843 to AR < 0.4 and AR < 0.6. The maximum deviation in the final dN,/dn result is
844 taken as a systematic uncertainty. dNg,/dn results for different tracklet AR cuts are
845 shown in Figure 73.
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Figure 73: dNg,/dn results for different tracklet AR cuts in different centrality intervals:
0—3% (top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom right).

846 In certain centrality intervals, variations in the AR cut cause fluctuations in tracklet
847 reconstruction around n 2 1.4, resulting in the acceptance correction for those bins fail-
848 ing to meet the required criteria and an unphysical uncertainty of 100%. Consequently,
849 results will be presented only for the range |n|< 1.3.

850 e Cluster ADC cut. Same as described in Section 8.1 dNg,/dn results for different
851 cluster ADC thresholds are shown in Figure 74.
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Figure 74: dNg,/dn results for different cluster ADC thresholds in different centrality inter-
vals: 0 — 3% (top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom
right).

A ~ 5% uncertainty due to variations in the cluster ADC cut can be explained as
follows. From Figure 20, applying a cluster ADC cut > 35 removes approximately 4.5%
of clusters in simulation (corresponding to the first two non-zero bins) and about 6.5%
in data (first non-zero bin). Increasing the cut to ADC > 50 eliminates an additional
~ 5% of clusters in data (second non-zero bin), which aligns with the observed ~ 5%
uncertainty resulting from this variation.

e Cluster ¢-Size cut. Same as described in Section 8.1 dNg,/dn results for different
cluster ¢-size selections are shown in Figure 75.
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Figure 75: dNg,/dn results for different cluster ¢-size selections in different centrality inter-
vals: 0 — 3% (top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom

right).

e Run segments. The data DST is divided into six segments, with five containing
1.5 million events each and the sixth containing the remainder. The baseline dNg,/dn
distribution is measured using the first segment, while the maximum variation observed
in the other five segments is quoted as a systematic uncertainty. dNg,/dn results for
different segments are shown in Figure 76.
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Figure 76: dNg,/dn results for different segments in different centrality intervals: 0 — 3%
(top left), 30 — 35% (top right), 65 — 70% (bottom left), and 0 — 70% (bottom right).

e Event generator. Same as described in Section 8.1.
e Strangeness decay. Same as described in Section 8.1.5

The relative magnitudes of each systematic uncertainty, defined as the ratio of the vari-
ation to the nominal dNg,/dn, are shown in Figure 77 for the centrality interval 0 — 3%,
30 — 35%, 65 — 70%, and 0 — 70%. The total uncertainty, calculated as the quadrature sum
of all individual contributions, is also presented.

5Uncertainties in the event generators and strangeness decays are not included in this version of the paper
draft. These uncertainties will be evaluated when the centrality divisions for EP0S4 and AMPT and the HIJING
with an enhanced strangeness simulations are available.
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Figure 77: Systematic uncertainties for the centrality interval 0 — 3% (top left), 30 — 35%
(top right), 65 — 70% (bottom left), and 0 — 70% (bottom right).

8.3 Summary of systematic uncertainties

Systematic uncertainties for different centrality intervals are detailed in Appendix J, while
Table 7 provides a summary of the uncertainty ranges for each source in both analysis
methods. Note that in the closest-match method, this misalignment effect is accounted
for using a correction factor that compensates for geometric differences between data and
simulation (Section 7.2.1), along with the associated uncertainty. To avoid double counting,
this systematic uncertainty is not separately evaluated in the closest-match method.
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Table 7: Systematic uncertainties for different sources.

Source The combinatoric method [%] The closest-match method [%]
Corrections 0.2-0.77 0.3-1.2
Tracklet reconstruction 1.0-2.1 3.2x1073-1.7
Cluster ADC selection 3.4-8.7 2.8-5.2
Cluster ¢-size selection 1.0x107%-0.3 2.0x1074-5.5x1072
Run segment 1.2x1073-1.1 9.3x1072-1.6
Event generator - -
Secondaries - -
Misalignment 0.6-2.2 -
Total 3.9-9.0 2.8-5.6
Discussion

The systematic uncertainties from different sources exhibit non-trivial correlations between
the two analysis approaches, as shown in Figure 78. This arises because both methods share
common global objects, such as clusters, and utilize the same binning definitions in the final
measurement.

For statistical uncertainties in corrections, the closest-match method incorporates the
effect of correcting geometric differences between simulation and data, leading to a slightly
larger uncertainty compared to the combinatoric method. Another difference is the segmen-
tation of events — the closest-match method divides events into six segments, whereas the
combinatoric method splits them into two segments. The dominant source of uncertainty
in both methods is the cluster ADC cut, which impacts tracklet reconstruction differently
in each method. The combinatoric method reconstructs all possible cluster pairs, making
it more sensitive to a change in the combinatorial background caused by variations in the
number of clusters. In contrast, the closest-match method selects only the cluster pair with
the smallest AR as the final tracklet, making it less susceptible to a change in the cluster
multiplicity.
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Figure 78: The top-left plot presents all sources of uncertainty on a single canvas, providing
a direct comparison of their relative scales. The remaining plots show individual sources of
uncertainty separately.

9 Results

Figure 79 shows the dNg,/dn in data, HIJING generator, and HIJING simulation closure, and
from the PHOBOS measurement [10] in each centrality interval.

Results from the combinatoric and the closest-match methods are statistically combined.
Systematic uncertainties are categorized into two groups based on the correlation coefficient:
those with a correlation coefficient greater than 0.1 are treated as fully correlated, while
those with a correlation coefficient less than 0.1 are considered uncorrelated. The correlated
uncertainty on the weighted average result, s, is calculated:

\/Zk’ [(sphobOS)k + (ScmS)k]z
2

The weighted average of the two approaches and the uncorrelated uncertainty on the weighted
average result, ox;, are computed as:

S =

—-1/2

_ A 1
X:I:UX:ZZ’ o, Zw, ,  Where wi:m

where X; and ox,; represent the value and uncorrelated uncertainty reported by the two
approaches. The total uncertainty of the weighted average result is obtained by:

— /g 2
Ototal = 52 + Ox
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Figure 81 presents the measured dN,/dn spectra in all centrality classes. Results from
both analysis methods are compatible with the PHOBOS measurement within uncertainty.

Figure 80 shows the ratio of dNg,/dn results from both analysis methods for the 20-25%
centrality interval, showing consistency with unity within uncertainties. The uncertainty is
fully propagated using the covariance matrix®.
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Figure 79: The dN,/dn distributions in from HIJING generator, simulation closure, data,
and the PHOBOS measurement in each centrality interval.

The centrality dependence of the average dNg,/dn at midrapidity is shown in Figure 82
and is compared to previous measurements at RHIC. The dNg,/dn normalized by (Npar
) is also shown as a function of (Npuy ) in Figure 82. The midrapidity charged-hadron
multiplicities, the number of participants, and the charged hadron multiplicities normalized
to the number of participant pairs, (Np.t )/2, are summarized in Table 8.

SFor f = 4, the standard deviation of f, oy = \/(Z4)2 + (%)2 — 2Z2E, where oap = poaop and p is
the correlation coefficient.
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Figure 80: The ratio of dN,/dn results from both analysis methods.

Discussion

Results from both the combinatoric and the closest-match methods are consistent with previ-
ous measurements within uncertainties. The dN, /dn results from the closest-match method
align with the trends observed in the cluster- and tracklet-level distributions (Figure 22 and
53), where data show a higher count of clusters and uncorrected tracklets compared to sim-
ulation. Since the « correction factors remain approximately uniform across the n range
within the defined acceptance (Figure 61), the corrected tracklet and dNg,/dn distributions
are expected to follow the same trend as the uncorrected cluster and tracklet distributions.

10 Conclusion

This note details the measurement of charged-hadron multiplicity per unit pseudorapid-
ity, dNgn/dn, using field-off data from Run 2024 in Au+Au collisions at /syy = 200 GeV,
collected with the sSPHENIX detector. Results are presented as a function of 7 across dif-
ferent centrality intervals. The dNg,/dn increases for more central events, and the average
dNe,/dn per participant pair, Np./2, also exhibits a mild increase with increasing Npat.
Both trends are consistent with previous measurements reported by PHOBOS, PHENIX, and
BRAHMS. The sPHENIX measurement, which combines two analysis methods, achieves a
[1.6]"reduction in uncertainty compared to previous RHIC results using the tracklet method,
featuring full 27 azimuthal coverage at mid-rapidity and presenting charged particle multi-
plicity as a function of pseudorapidity. The analysis also serves an essential commissioning
purpose, by demonstrating the capabilities of several new detector components and their
agreement with established physics results, which will further enable the broader sSPHENIX
physics program.

"This value is based on our current conservative estimate including all sources of uncertainty. The finalized
number will be updated when the full set of uncertainties are evaluated and included. The current results
are obtained using (1) HIJING simulations generated with an older version of the MVTX geometry and (2)

7
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Figure 81: dNg,/dn distributions in different centrality intervals.

a partial set of systematic uncertainties, as noted in the footnotes of previous sections. Full results will be
provided for the second circulation.

78



[I%SOB

dN_,
dn

ChHsoz

dN
dn

part

2/N_ [0

Figure 82: (Top) dN,/dn at midrapidity as a function of centrality intervals. (Bottom) The

10°

2x10°
10°

30

®  sPHENIX (Combined)

@  PHOBOS [Phys. Rev. C 83, 024913 (2011)]

¢ PHENIX [Phys. Rev. C 71, 034908 (2005)]
BRAHMS [Phys. Rev. Lett. 88, 202301 (2002)]

SsPHENIX Internal
Au+Au |/s,,=200 GeV

/0 60 50 40 30 20 10 0

4.5

3.5

2.5

1.5

Centrality [%0]

[ e ] SPHENIX (Combined)
5 PHOBOS [Phys. Rev. C 83, 024913 (2011)]
o PHENIX [Phys. Rev. C 71, 034908 (2005)]
¢ BRAHMS [Phys. Rev. Lett. 88, 202301 (2002)]

SsPHENIX Internal
Au+Au |/s,,=200 GeV

LH]
L
L
IIII|IIII|IIII|IIII|IIII|IIII|IIII

0 50 100 150 200 250 300 350 400

N [

part

average dNg,/dn at midrapidity normalized by (N ) as a function of (Npa ).

79



Table 8: Summary of the midrapidity charged-hadron multiplicities, the number of partici-
pants, and the charged hadron multiplicities normalized to the number of participant pairs

{Npart )/2.

dN .,

chh/dnhn\gos

Bin =% <0 Noart Npart/2
0%-3% 72624258 359.3+2.1  4.0+0.1
3%-6% 64794232 3312429  3.9+0.1
6%-10% 560.7 +£20.0 297.0+ 3.2 3.8+0.1

10%-15% 470.8+16.9 257.3 4+ 3.8 3.7£0.1
15%-20% 387.3+13.7 219.0+43  3.540.1
20%-25% 318.5+11.3 185.74+4.6  3.4+0.1
25%-30%  259.7+9.3 156.0 5.0 3.3£0.2
30%-35% 210.14+7.4 1300452  3.240.2
35%-40% 168.0+59 1071452 31402
40%-45% 1312447 871451  3.0£0.2
45%-50% 101.8 £3.5  69.5£5.0 29+£0.2
50%-55%  76.6 2.7 54.2 +4.7 2.8+£0.3
55%-60%  55.7 £ 1.9 414+£44 2.7+£0.3
60%-65% 39.3+14  30.7+3.9 2.6+0.3
65%-70% 268410 221433  24+04
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« Appendices

ws A INTT bad channel masks

wss 1his section shows the supporting plots for the INTT hot, dead, and cold channel masks.
wr  Figure 83-86 show the distributions of channels classified as hot, dead, cold, and good,
wss respectively.
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Figure 83: The map of hot channels of run 54280.
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Figure 84: The map of dead channels of run 54280.
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Figure 86: The map of good channels of run 54280.
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INTT geometry with survey measurement

(Numbers are quoted with 4 significant figures for consistency throughout this section.)

The survey measurement performed after the installation of INTT indicated a gap be-
tween two INTT half barrels. This gap is reflected as dips in the azimuthal angle distribution
of the INTT strips, as shown in Figure 87.

HENIX Workin-progress
INTT Survey data Enjry: 372736

Entry/(0.00175 rad)
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Figure 87: Azimuthal angle distribution of INTT channels, calculated from the survey mea-
surement.

The INTT GEANT4 geometry model is modified accordingly to account for the acceptance
difference between ideal and misaligned detector placement. The following list describes the
modifications:

1.

The dimensions of the GEANT4 volume representing the space between the active
area and the stave peek are updated from an incorrect default value of 7.622 mm to
0.8000 mm based on the production design.

. The equivalent specifications of the metal and carbon support rings representing the

INTT stave peek and the INTT ladder support structure at both ends of INTT barrel
are updated from 0.5000 cm to 0.7500 cm and from 0.7500 cm to 0.3125cm in length
respectively. The radii of both rings are updated such that an equivalent material
budget as the production design is achieved. The detail is shown in Figure 88.

The physical position along the sSPHENIX Z-axis of both support rings is automatically
adjusted by accurately setting the values of their lengths (see item 2).

The center position of both support rings and the inner and outer barrel support skins
with respect to the sPHENIX origin is adjusted according to the averaged X and Y
positions of all INTT ladders based on the survey, which corresponds to 0.4025 mm
and -2.886 mm in both X and Y axes, respectively.

The sensor’s positions and rotations relative to the ladder remain unchanged with the
default ideal geometry. The translations and rotations of the sensor relative to the
sPHENIX coordinates are adjusted according to the survey measurement of the phys-
ical ladder to which the sensor belongs. These adjustments include (a) the translation
in the X and Y directions of the individual ladder, (b) the average translation in the
Z direction of all ladders, and (c) the rotation around the Z-axis of the ladder (which
is parallel to the sSPHENIX Z-axis).
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1118 6. A shift in the Z direction with respect to the sSPHENIX origin is applied to both support
1119 rings and the inner and outer barrel support skins according to the average translation
1120 in the Z direction of all ladders.
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SCALE 1:1
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Figure 88: (Left) Mock module of the INTT endcap support structure. (Right) Simplified
GEANT4 volume design of the INTT endcap support structure.

121 An offset is applied to account for various factors when translating the survey measure-
u2 ment to the X and Y coordinates of the GEANT4 physical volume placement for the INTT
2 ladder. This offset encompasses the point where the survey probe touches the ladder’s surface
u2e  (illustrated by the dashed green line in Figure 89), as well as the thicknesses of the sensor (the
2 bottom red box in Figure 89), glue, high-density interface (the blue box above the sensor),
s and carbon fiber plate (the grey shape above the high-density interface). A 0.2282mm radi-
nz ally inward is given to the offset, derived by subtracting the distance of 2.386 mm between
s the survey measurement point and the bottom of the sensor from the 2.158 mm between the
2 center of the INTT GEANT4 physical volume and the sensor’s bottom.
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Figure 89: The drawing presents the amount of correction.

1130 The center of INTT half barrels on the transverse plane is determined by averaging the
un X and Y positions of the ladders obtained from the survey measurement and found to be

88



1132

1133

shifted to (0.4027 mm, —2.887 mm) relative to the ideal position at (0.000 mm,0.000 mm).
Figure 90 shows the center position of ladders in the ideal GEANT4 geometry (in red) and

usz  as measured from the survey (in blue).
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Figure 90: The center position of ladders in the ideal GEANT4 geometry (in red) and as
measured from the survey (in blue).

The INTT ladders are shifted individually along the sSPHENIX Z-axis, as shown in Fig-
ure 91, resulting in an average displacement of —4.724 mm relative to the nominal position
at 0mm. The standard deviation of these longitudinal shifts is 0.1904 mm, an order of mag-
nitude smaller than the mean shift. Consequently, a uniform translation in the Z position
of the sensor is applied, as outlined in item 5 of the preceding list.
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Figure 91: Center positions in the Z direction of all ladders according to the survey.

A sample of 100 simulated events is generated using the single-particle generator in the
sPHENIX simulation production framework to verify the updated geometry. Within each
event, 2000 charged pions are uniformly sampled in —7 < ¢ < 7 and —1 < n < 1. The
resulting ¢ and 7 distributions of reconstructed clusters, referred to as TrkrCluster in the
sPHENIX software, are shown in Figure 92. The visible dips in the cluster ¢ distribution
are consistent with those shown in Figure 87.
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The final implementation can be

-1 05 0 05 1 15 2 25
TrkrCluster n

and 7 distributions of single-particle events.

found at the sSPHENIX GitHub coresoftware repository.

Packages that are modified for the final deployment of the updated geometry include:

e simulation/g4simulation/gdintt: https://github.com/sPHENIX-Collaboration/c
oresoftware/tree/master/simulation/g4simulation/géintt

e offline/packages/intt: https://github.com/sPHENIX-Collaboration/coresoftwar
e/tree/master/offline/packages/intt
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e offline/packages/trackreco: https://github.com/sPHENIX-Collaboration/coresof
tware/tree/master/offline/packages/trackreco

Two pull requests for integrating the modifications into the sSPHENIX software framework
are

e sPHENIX-Collaboration/macros: https://github.com/sPHENIX-Collaboration/m
acros/pull/790

e sPHENIX-Collaboration/coresoftware: https://github.com/sPHENIX-Collaborati
on/coresoftware/pull/2595

sPHENIX Jenkins continuous integration system performs various quality assurance tests.
The resulting build and test reports include diagnostic plots for QA, which can be accessed
from the links provided.
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w C  Supplementary plots for cluster distributions

ue+ This section presents additional cluster distributions in data and simulation. The selection
ues criteria have been slightly relaxed, with no cuts applied to the cluster ¢-size and ADC.
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D Discrepancy in cluster ¢-size and ADC distributions
between data and simulation

A simplified model is implemented in the FUN4ALL module, PHG4InttHitReco, to approxi-
mate charge diffusion in silicon. For each charged particle passing through the active region,
a column with a fixed radius, referred to as the diffusion radius, is defined to represent the
range of charge diffusion. A check is then performed to determine whether this column
overlapped with a strip and to calculate the overlapping area. This overlap is used to assign
the energy deposit to the strip, assuming a uniform energy profile across the column’s cross-
section. After the charge diffusion step, clustering is performed by grouping adjacent strips
with non-zero energy deposits. The cluster ¢-size is determined as the number of strips with
non-zero energy deposits within a cluster, while the cluster ADC is calculated as the sum of
the ADC values of those strips.

A control sample of clusters is defined and constructed to enable a fair comparison be-
tween data and simulation and to ensure that the selected clusters primarily originate from
collisions rather than beam background. First, hits are clustered using the standard Z-
clustering algorithm. From the resulting collection of clusters, those with a pseudorapidity
In|< 0.1 and a cluster Z-size of 1 are selected. These criteria ensure that the selected clusters
are most likely produced by particles incident perpendicularly to the INTT strips.

Figure 95 compares the cluster ¢-size and ADC distributions of the control sample in data
against simulations using different diffusion parameters. The distributions of data without
Z-clustering are normalized to 1, while the distributions with Z-clustering are scaled based
on the ratio of their integral to the non-Z-clustered data. In simulations with a large diffusion
radius, the cluster ¢-size and ADC values can extend to the maximum observed in the data.
However, the shapes of the simulated distributions deviate from the data in the intermediate
region. In addition, the data-to-simulation ratios for both cluster ¢-size and ADC deviate
from 1, indicating that none of the tested diffusion radii in the simulation fully reproduce
the observed behavior in data.
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Figure 95: The cluster ¢-size (left) and ADC (right) distributions of the selected control
sample in data and simulations with different diffusion parameters.

The beamspot, event vertex, and tracklet reconstructions in the closest method are per-
formed on simulation samples with different diffusion radii. Figure 96 presents the cluster n
and the reconstructed tracklet distributions in data and simulations with varying diffusion
parameters. Notably, the shapes of the distributions for simulations with large diffusion
radii differ significantly from those with smaller diffusion parameters. This difference can be
explained by the fact that, for a large diffusion radius, a particle in the simulation spreads
its energy deposits across multiple strips. As a result, the constant cluster ADC cut dispro-
portionately impacts the low-7 region, leading to a distorted distribution.

The substantial difference in the tracklet n distributions for simulations with a large dif-
fusion radius introduces significant variation in the correction factor compared to simulations
with smaller diffusion parameters. This variation results in a large systematic effect when
the diffusion parameter is varied. Consequently, the baseline analysis uses simulations with
the default diffusion parameter of 5um.
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Figure 96: The cluster 7 (top left) reconstructed tracklet n (top right), A¢ (bottom left), and
An (bottom right) distributions in data and simulations with different diffusion parameters.
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E Supplementary plots for vertex reconstruction in the
combinatoric method

The A¢ and DCA cuts used in proto-tracklets selection for vertex Z reconstruction are 0.6
degrees and 0.1 cm, respectively. This is supported by the previous cut scan study with the
simulation sample of run 20869, as shown in Figure 97.
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Figure 97: The mean (left) and standard deviation (right) of the AZ distribution as a
function of A¢ and DCA cuts, where AZ is the difference between INTT vtxZ and truth

vertex Z.

The vertex Z reconstruction performance is studied with simulation sample of run 54280,
as shown in Figure 98, and Figure 99 for the high multiplicity events. The wiggling structure
observed in the correlation between AZ, the difference between INTT vtxZ and truth vertex
Z, and truth vertex Z is expected to be due to the intrinsic INTT sensor geometry. The
vertex Z reconstruction resolution of 0.15 mm is measured for the high-multiplicity events,
which is more than one order of magnitude smaller than the INTT strip length, 1.6 or 2.0 cm.
The INTT vertex Z reconstruction efficiency is shown in Figure 100, where the efficiency is
defined as the fraction of the number of events with AZ < 1cm. The efficiency of vertex Z
reconstruction is consistently at unity up to centrality 70%.
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INTT clusters > 500. Right: The vertex Z reconstruction resolution for the high-multiplicity

events.
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Figure 100: The vertex Z reconstruction efficiency as a function of centrality bin and truth
vertex Z.

1220 In data, the correlation of vertex Z reconstructed by INTT and MBD is checked, as
21 shown in Figure 101. A positive correlation is identified indicating the reliability of the
2 algorithm developed. The cause of the two satellite groups along the major correlation
1223 is under investigation. It is expected to be due to the MBD calibration. The two satellite
1224 groups are discarded in the analysis of the combinatoric method, as mentioned in Section 6.4.
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Figure 101: The correlation of vertex Z reconstructed by INTT and MBD for centrality
interval 0 — 70% (left) and the events with numbers of INTT clusters > 500 (right).

1225 In data, the reconstructed vertex 7 distribution for each centrality interval is compared
126 to that for the centrality interval 0-70% for the reliability study, as shown Figure 102. The
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2z good agreement is observed up to the centrality
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interval of 70-80%.
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Figure 102: In data, the reconstructed vertex 7 distribution for each centrality interval
comparing to that of for the centrality interval 0-70%.

E.1 INTT z-vertex quality checks

1228

120 In a single event, after stacking the trapezoidal shapes formed by all valid cluster pairs, the
230 resulting distribution is fitted with seven Gaussian functions, each with a different fit range.
3 An example from a data event is shown in Figure 103. The z-vertex is then determined as
2 the average of the fitted Gaussian means.
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Figure 103: The probability distribution of the z-vertex in a single event by stacking up the
trapezoidal shapes formed by the valid cluster pairs.

Three properties are evaluated and shown in Figure 104: the width of the fitted Gaussian
distribution, the full width at half maximum (FWHM) of the distribution, and the difference
between the INTT and MBD z-vertices. Table 9 summarizes examples of selection criteria
for each property, and the distributions after applying the quality selections are presented
in Figure 105.
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Figure 104: The properties of the reconstructed z-vertex before the quality check. (Left) The
fit Gaussian width of the distribution. (Middle) The FWHM of the distribution. (Right)
The z-vertex difference between the INTT and MBD.
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Table 9: The selections used in the INTT vtx, quality check.

Property Cut Minimal [cm] Cut Maximal [cm]
Fit Gaussian Width 1.5 10
FWHM 2 14
A(VtXIZNTT, Vtxlg/IBD) -3.5 4.5
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Figure 105: The properties of the reconstructed z-vertex after the quality check. (Left) The
fit Gaussian width of the distribution. (Middle) The FWHM of the distribution. (Right)
The z-vertex difference between the INTT and MBD.

1238 The standard deviation of the reconstructed INTT z-vertex is examined and presented
1239 in Figure 106. The long tail in the distribution is significantly reduced after applying the
1240 selection, improving the agreement between data and simulation distributions.
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Figure 106: The distribution of the standard deviation of the reconstructed INTT z-vertex
before the QA selection (Left) and after the QA selection (Right).
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E.2 Per-event vertex X/Y position reconstruction

(This section presents a feasibility study of reconstructing the beam spot width performed
in Run2023.)

With the average-vertex XY and the per-event vertex Z in place, the per-event vertex XY
position reconstruction can be feasible. The limit of INTT is therefore extended forward.
Note that reconstructing the event-by-event vertex XY is mainly for obtaining the beam
spot size and vertex-position stability. The idea is similar to the 2D tracklet fill method as
described in Section 6.4.2. On the contrary, the events with high multiplicities are expected
to have higher precision as more information can be included in the reconstruction. The
steps are described in the following:

1.

Y axis [cm]

Define the dimensions and center of a finely-binned 2D histogram. The central point
is determined by the average vertex XY position. In the standard configuration, this
corresponds to a 5 mm X 5 mm square with bin sizes of 50 um x 50 pm.

In an event, start with a cluster in the inner layer and loop over the clusters in the
outer layer. The combinations with cluster A¢ < 5 degrees and the strip Z positions
able to link to the reconstructed per-event vertex Z position are kept. Move to the
next inner-layer cluster, and repeat the procedure.

Populate the trajectories of the combinations into the 2D histogram. The example is
shown in Figure 107.

Remove the background of the histogram.

The per-event vertex XY are obtained by taking the averages on both axes of the
histogram, as shown in Figure 107.
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Figure 107: 2D histogram filled by the trajectories of combinations (left) and post back-
ground removal (right). The red and blue full cross marks are true and reconstructed vertex
XY, respectively.
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The reconstructed per-event vertex XY is compared with the true vertex XY in the
simulation. Figure 108 and 109 show the correlations and deviations between true and
reconstructed vertices for both axes. The correlations described by linear fits are consistent
with unity, indicating good reliability of the current reconstruction method. In general, the

resolution is 30 pm for the high-multiplicity events.
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Figure 108: Correlation between the true vertex and reconstructed vertex for X (left) and Y
(right) axes. The events with number of clusters > 3000 are shown.
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Figure 109: Difference between the true vertex and reconstructed vertex for X (left) and Y
(right) axes. The events with number of clusters > 3000 are shown.

sPHENIX Simulation
e e

To obtain the beam spot size in data, the average vertices are obtained as the first step,
which are (-0.191 mm, 2.621 mm) and (-0.277 mm, 2.576 mm), respectively. The discrepancy
of the vertices between the two approaches can be explained by the detector misalignment,
as described in Chapter 8.1.1. The average of the two vertices, (-0.234 mm, 2.599 mm), is
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used in the per-event vertex XY position reconstruction. The beam spot sizes for both axes
are shown in Figure 110. The beam spot size is ~ 1 mm for both axes. In addition, the beam
position stability is studied, as shown in Figure 111. The observed consistency in the vertex
position over the run suggests a stable behavior. Consequently, the average vertex position
in the XY plane demonstrates the adequacy for being utilized in the tracklet reconstruction.
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Figure 110: Distributions of the beam spot size in X (left) and Y (right) axes with run 20869.
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Figure 111: Vertex Position as a function of event index for X (left) and Y (right) axes with
run 20869.
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F Supplementary plots for vertex reconstruction in the
closest-match method

The mean and sigma values of the Gaussian fit to the difference in 7 position between the
truth vertex and the reconstructed vertex, A(vtxXe vtxh) are shown as functions of
Adeyy and DCA.y in Figure 112. The resolution is quantified using the effective width,
defined as the minimal range containing 68.5% of the distribution. The distribution of
A(vtxBeeo ytxTrath) and its dependence on the number of clusters in the inner layer, with the

optimized parameters A¢q,; = 0.3 degrees and DCA; = 0.15cm, are shown in Figure 113.
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Figure 112: The mean (left) and sigma (right) of the Gaussian fit to A(vtxie, vixTuth) ag
a function of Agey and DCA .
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Figure 115: A(vReco pTruth) and the Gaussian fit.
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Figure 116: Comparisons between the INTT tracklet vertex Z reconstruction and the MBD
vertex determination in different centrality intervals.
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G Supplementary plots for the tracklet reconstruction

In the closest method, reconstructed tracklets are matched to the generator truth object,
PHG4Particle (referred to as G4P in the following figures), to evaluate the purity of tracklet
reconstruction. The matching procedure is as follows. In simulated events, each cluster is
matched to a truth-level PHG4Particle that contributes the maximum energy to it. Each
PHGA4Particle has a unique identifier, referred to as track ID, and thus each tracklet has a
pair of track IDs of PHG4Particle corresponding to its constituent clusters. Next, all recon-
structed tracklets are checked to determine whether their constituent clusters are associated
with the same PHG4Particle. Specifically, if the matched PHG4Particle for both clusters
has the same track ID, the tracklet is labeled as matched; otherwise, it is classified as not
matched. For tracklets that are matched to a PHG4Particle, an additional classification is
performed based on the track ID. A positive track ID indicates that the PHG4Particle is a
primary particle, while a negative track ID means that it is a secondary particle originat-
ing from material interactions or decays. Note that, for the truth-matching study, the AR
criterion used in tracklet reconstruction is effectively removed.

The matching procedure is applied to a dedicated simulation sample generated using the
single-particle generator within the sSPHENIX simulation framework. Figure 118 presents key
tracklet variables, categorized based on different matching criteria. The truth-matching pro-
cedure indicates that tracklets associated with primary particles typically exhibit A¢ < 0.2,
An < 0.35, and AR < 0.4. The large tails observed in all tracklet kinematic distributions are
primarily attributed to secondary particles and combinatorial backgrounds. The matching
study also validates the tracklet selection criterion of AR < 0.5 in the baseline analysis, en-
suring that tracklets originating from primary particles are retained with minimal inefficiency
while maintaining relatively low contamination from combinatorial backgrounds.

A metric, defined as the ratio of the number of generated hadrons matched with a re-
constructed tracklet to the total number of generated hadrons, quantifies the fraction of
truth-generated hadrons that can be reconstructed as tracklets and is shown in Figure 119
as a function of the truth hadron ¢ and 7. This ratio remains mostly uniform across 7,
while the two dips in ¢ coincide with the known gaps between INTT barrels, as discussed
in Section B. It is important to note that this fraction should not be interpreted as tracking
efficiency - tracklets are formed by pairing only two INTT clusters, whereas a full track is
reconstructed by combining clusters from all SPHENIX tracking detectors, MVTX (3 layers),
INTT (2 layers), Time Projection Chamber TPC (48 layers), and Time Projection cham-
ber Outer Tracker TPOT (1 layer), making it significantly more robust against fakes and
combinatorial backgrounds.

Figure 120 shows an example of tracklets grouped by matching criteria in both the trans-
verse and Z-p planes, providing a clear visual representation of the tracklet reconstruction
and truth-matching process. The same event is shown in Figure 120 in the n— ¢ phase space,
overlaid with primary PHG4Particles. Tracklets matched to PHG4Particles with positive
and negative track IDs are displayed separately.
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= H  Supplementary plots for the correction factors

126 Corrections factors in each centrality interval are shown in this section.

s H.1 The combinatoric method
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Figure 122: The acceptance and efficiency correction for each centrality interval.
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Figure 124: The acceptance correction for each centrality interval.

120

n



1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

I Strangeness fraction in simulation

The FUN4ALL simulation framework, particularly the HepMCNodeReader module, is modi-
fied and expanded to allow the enhancement of strange particle fractions. Key modifications
include methods for defining enhancement fractions, lists of particle IDs and production
probabilities based on the existing measured quantity, and assigning unique identifiers to
newly added particles. Static functions for the fitted distributions allow the sampling of
kinematic variables, while the fraction of additional strange particles could be dynamically
specified through FUN4ALL macro G4 _Input.C. The full implementation can be found at
https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/simula
tion/gé4simulation/g4main/HepMCNodeReader.cc and the corresponding pull request
https://github.com/sPHENIX-Collaboration/coresoftware/pull/3349.

The functions used to sample the particle kinematics, pr and n, are derived by fitting the
generator truth distributions of K? meson from the PYTHIAS simulation. The p7 distribution
is modeled using an Exponentially-Modified Gaussian (EMG) function, defined as:

p+ Ao —x)
V20 ’

where p and o are the mean and standard deviation of the Gaussian component, A is the rate
parameter of the exponential component, and erfc(z) is the complementary error function.
The n distribution is modeled as the sum of two Gaussian functions, with equal fractions,
sharing the same standard deviation, but with distinct mean values. The generator truth
distributions for pr and 7, along with their respective fits, are shown in Figure 125.

A
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Figure 125: The generator truth distributions of pr and 1 and their corresponding fit

A standalone test was performed to sample pr and 7 using the EMG and double Gaussian
functions, with parameters set according to the fit results, and ¢ uniformly sampled from
—m to w. A comparison between the truth and sampled distributions of the total momentum
p and its z-component p, is shown in Figure 126, while the two-dimensional distributions of
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352 pr and 7 from the truth and sampled data are presented in Figure 127. A good agreement
13 between the truth and sampled kinematics ensures that the additional particles introduced
1s¢ 1n the simulation are consistent with the underlying kinematic properties.
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Figure 126: The truth and sampled distributions of the total momentum p (left) and its
z-component p, (right).
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Figure 127: The two-dimensional distributions of pr and 7 from the truth (left) and sampled
(right) particles.

1355 Validation of the implementation was performed using two sets of HIJING minimum bias
136 simulations with enhancement fractions of 40% and 100%, respectively, each containing 500
157 events. For both validation samples, the additional particles were restricted to K mesons
155 and A baryons. The top plot in Figure 128 shows the number of K? mesons and A baryons
s at the HepMC-particle and PHG4Particle stages, confirming that the additional particles
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1363

were correctly added to the PHG4Particle collection without altering the HepMC record.
Marginal differences in the py and 7 distributions of PHG4Particle, shown in the bottom
plots of Figure 128, indicate that the introduction of additional particles did not significantly
distort the overall event kinematics.
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Figure 128: The number of K? mesons and A baryons at the HepMC-particle and
PHGA4Particle stages (top), the pr (bottom left) and n (bottom right) distributions of
PHGA4Particles with additional strange particles.
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s J  Supplementary plots for the systematic uncertainty

e Systematic uncertainties in each centrality interval are shown in this section.

1366

J.1 The combinatoric method
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Figure 129: Systematic uncertainties in different centrality intervals.

124

1 2
Pseudorapidity 1



s J.2 The closest-match method
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Figure 130: Systematic uncertainties in different centrality intervals.
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K Statistical combination of measurement results

Three methods are tested for combining results from the combinatoric and the closest-match
methods. Two of these involve standard statistical techniques: the least squares (LS) method
and the profile likelihood method, both of which incorporate uncertainty correlations between
the two analysis approaches into the covariance matrix, ensuring they are properly accounted
for in the final combination. The third method is based on and adapted from the combination
procedure outlined in the CMS publication [31].

K.1 The least square method

Given a set of measured values, yq, - -, yy, with corresponding uncertainties oy, ---, oy at
points xq, - - -, xn, the true value \; of y; is assumed to follow a functional form \; = A\(z;, 0).
The optimal A is determined by minimizing the generalized x? function

N

(A = Z (v = NV )iy = A

ij=1

which is achieved by solving the derivative of x?*(\) with respect to A equals zero. The
covariance matrix takes the form

2
Vii = E 01k Vi = E PLO1,k02 K
k

%
V= )
Vor = E PrO1 k02 ) Vg = E Tk
% %

where

o1 ¢ the k-th systematic uncertainty of measurement 1,
o9 ¢ the k-th systematic uncertainty of measurement 2,

pr - the correlation coefficient of the i-th uncertainties between the two measurements

The combined measurement is then given by

y1Vaa + 42 Vi1 — (y1 + y2) Viz
Vii + Vg — 2V

g:

with the one standard deviation uncertainty given by

| vaVe -V
Y Vir + Vo — 2Vpo
Figure 131 presents the results from both analysis approaches and the combined mea-

surement using the LS method in three different centrality intervals. Notably, the combined
value can sometimes exceed both input measurements, which is not physically meaningful.
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This occurs when the covariance is large due to a strong correlation in one of the systematic
uncertainties (e.g pr >~ 1), leading to an unphysical combined results.

To verify this effect, Figure 132 shows the impact of artificially reducing the correlation
of the cluster ADC uncertainty from its original value of 0.986 to 0.5. With this modified
correlation, the combined result falls between the two input measurements, supporting the
interpretation that a high correlation artificially inflates the combined value.
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Figure 131: The results from both analysis approaches and the combined measurement with
the LS method in three different centrality intervals. (Top left) centrality interval 0-3%,
(Top right) centrality interval 30-35%, (Bottom) centrality interval 65-70%
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Figure 132: The impact of artificially reducing the correlation of the cluster ADC uncertainty
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from its original value of 0.986 (top) to 0.5 (bottom).

K.2 The profile likelihood method

Assuming the measurement uncertainties follow Gaussian distribution, the joint probability
(likelihood) of obtaining the measurements 1 and 2 given a true value \ is described by a

multivariate Gaussian distribution:

L) !

N 2m4/det(V)
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where
Y — A

Yo — A

is the difference vector between the observed values and the hypothesized true value, and
V=1 is the inverse of the covariance matrix,

det(V) = Vi1 Vay — Vi3,

1 Voo —Vio
N det(V) _‘/'12 ‘/11

-1

The exponent in Equation K.2 then becomes:

Via
det(V)

Vi
. 2
=N gk ]

1 1
-5 d"Vld = —= | (1 — N)? —2(y1 — A)(y2 — A)

2 det(V)
The best estimate A is defined as the value that maximizes L(\), obtained by scanning
over the parameter of interest A and computing the likelihood L()\) given the data and the
constructed covariance matrix. .
To quantify the uncertainty in A, one uses the likelihood ratio test statistic
L(A)

Ax*(A) = —2In L)

With Wilks’ theorem, Ax?()\) approximately follows a x? distribution with one degree of
freedom in the limit of a large sample size. This property allows for defining a confidence
interval for A\. For example, a threshold of Ax? = 1.0 corresponds roughly to a 68.3%
confidence interval, Ay? = 2.71 corresponds to about 90%, and Ay? = 3.84 corresponds to
roughly 95% confidence.

Figure 133 presents the results obtained using the profile likelihood method. The com-
bined uncertainty (confidence interval) appears to be overly optimistic, potentially underes-
timating the true uncertainty rather than providing a more conservative estimate.

129



1414

1415

1416

1417

1418

1419

1420

1421

'_\
o
o
o

— = L oo e e e P e — 5 B e
RS C J k) L B
5 950F Centality 0-3% 3 5 280 centrality 30-35% %
% F * PHOBOS approach B % L ® PHOBOS approach ]
900; = CMS approach B 260; = CMS approach ]
850 ; - Combined (Profile likelihood, C.L=99%) é L - Combined (Profile likelihood, C.L=99%) ]
g E 240~ ]
800" 3 OF ]
750F w 3 220F -
700 E 2001 . .
6501 3 : ]
E E 180~ -
600; = L ]
550 = 1601 =
:\ L L l L L L L ‘ L L L L ‘ L L L L ‘ L L L L l L L \: O L L l L L L L ‘ L L L L ‘ L L L L ‘ L L L L l L L L
-2 -1 0 1 2 -2 -1 0 1 2

n n

— L e e e ML e e s LA s o s

§ a0l ]

S Centrality 65-70% B

% | * PHOBOS approach i

. = CMS approach |

35 [E combined (Profile likelihood, C.L=99%) 7]

30 —

25 -

20 0 T

-2 -1 0 1 2

Figure 133: The results from both analysis approaches and the combined measurement with
the profile likelihood method in three different centrality intervals. (Top left) centrality
interval 0-3%, (Top right) centrality interval 30-35%, (Bottom) centrality interval 65-70%

K.3 The adapted combination procedure from the CMS publica-
tion

The results from the two analyses are consistent within uncertainties and are therefore av-
eraged using the arithmetic mean. Uncertainties are categorized into two groups based on
the magnitude of the correlation coefficient: those with a correlation coefficient greater than
0.1 are treated as fully correlated, while those with a correlation coefficient less than 0.1
are considered uncorrelated. The correlated and uncorrelated uncertainties of the average
result, 5 and &, are calculated as

\/Z [(Sphobos)k + (Scms)k]2

2
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k

\/Z [(Ggtobon)? + (Tems)?]

o =

2
The total systematic uncertainty is then given by

= — /72 a2
Ototal = 0° + s°.

This procedure can be heuristically understood as follows. Correlated uncertainties are
treated as fully correlated, meaning the off-diagonal elements of the covariance matrix are
always the product of the uncertainties from the two approaches. When calculating the
total variance, this results in an expression of the form 0% +2 X 1 x 0109 + 05 = (07 + 09)?,
giving the square of the sum of the correlated uncertainties. In our case, since the dominant
uncertainty accounts for more than 90% of the total uncertainty and is almost fully correlated
between the two approaches (the cluster ADC uncertainty has a correlation coefficient of
0.986 between two approaches), computing the correlated uncertainty as the squared sum
may not introduce significant issues.

Figure 134 presents the results obtained using the adapted combination procedure from
the CMS publication.
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Figure 134: The results from both analysis approaches and the combined measurement with
the adapted procedure from the CMS publication [31]. (Top left) centrality interval 0-3%,
(Top right) centrality interval 30-35%, (Bottom) centrality interval 65-70%
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