Search for Thermal X-ray Features from the Crab nebula with SXS

NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: Davide De Martin (ESA/Hubble)

M. Tsujimoto, K. Mori, H. Lee, H. Yamaguchi, N. Tominaga, T. J. Moriya, T. Sato

1. Self-intro 2. X-ray microcalorimeter Self-introduction

- Space projects: committed to
 - 1. Suzaku/XIS for operation, calib (2008-2015)
 - 2. Astro-H/**SXS** for design, InT, operation, calib (2008-2017)
 - 3. XRISM/Resolve for InT, operation, calibration (2017-present)
 - 4. LiteBIRD for design, InT, calibration (2017-present)

24

1. Self-intro 2. X-ray microcalorimeter Self-introduction

- Scientific interests:
 - Plasma phenomena in
 - Stellar flares
 - X-ray binaries (WD, NS, BH)
 - Others
 - Currently working for renovating X-ray line spectroscopy based on XRISM data and *ab-initio* calc of AP, RT, HD.

1. Self-intro 2. X-ray microcalorimeter X-ray microcalorimetry

中性子星の観測と理論

1. Self-intro 2. X-ray microcalorimeter X-ray microcalorimetry

1. Self-intro 2. X-ray microcalorimeter X-ray microcalorimetry

- My contributions to SXS and Resolve include:
 - Design of onboard digital electronics.
 - Electrical I/F with the S/C bus system.
 - Integration & testing.
 - Micro-vibration and electromagnetic interference.
 - Ground calibration for the GV calibration.
 - Launch campaign and commissioning operation.
 - Development of X-ray event screening.
 - Assessment of high count rate observations.
 - Data visualization and anomaly detection based on ML.

Search for Thermal X-ray Features from the Crab nebula with SXS

Why no thermal shell is detected from this SNR? What does this imply about SN 1054?

NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: Davide De Martin (ESA/Hubble)

M. Tsujimoto, K. Mori, H. Lee, H. Yamaguchi, N. Tominaga, T. J. Moriya, T. Sato

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion **Crab shell**

- ~400 SNRs by X/γ-rays. (Ferrand & Safi-Harb 12)
- ~10% lack shells. ID'ed by PWN. Crab is one.
- Why no shells? A key to understand SNR variety.
- From SN explosion to SNRs.

Progenitor SN explosion SNR growthSNR emissionObservationTominaga, MoriyaLeeMori, Yamaguchi Tsujimoto, Sato

中性子星の観測と理論

p.9/24

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Crab is unusual as SNR

- Crab is a standard for X/γ-ray flux & time
 Proved NS birth in SN (Baade & Zwicky 1934)
- When viewed as SNR, it has uncomfortably
 - Low visible mass: 4.6+/-1.8 MO (Fesen+97)
 - Small kinetic energy <10⁵⁰ erg (Davidson+85)
 for a young Fe core-collapse SNR.
- Two ideas:
 - (1) Massive shell undetected (Chevalier77)
 - (2) Electron-capture SN w. $E_0 \sim 10^{50}$ erg (Nomoto+82)

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Search for undetected shell

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion **Observation**

- Last data. Cal.
- t_{exp} = 9.7 ks
- E > 2 keV &
 Fx~0.3 "Crab" w.
 GV.
- ∆E=4.9 eV for extended src.
- High obs eff ~ 71% (c.f., 5% for XIS).

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Plasma search (1) Method

• Upon local best-fit cont, thermal model added.

2025/5/19-21

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Plasma search (2) Result

• $3\sigma UL \text{ of } Y (= n_e^2 V) \text{ for CIE & non-CIE emission.}$

p.14/24

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Limit on plasma mass

15/24

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion HD simulation (1) Setup

• CR-Hydro-NEI code (Ellison+07, Lee+14).

20

- Time-dependent. NEI. 1D. Calculated to 10³ yrs.

Parameters are from Patnaude+15, Moriya+14, Fransson+96, Crowther07.		SN explosion	
		(a) Fe core E ₀ =1.2x10 ⁵¹ erg M _{ej} =12.2 Mo	(b) EC E ₀ =0.15x10 ⁵¹ erg M _{ej} =4.4 Mo
	(1) ISM n ₀ =0.1 cm ⁻³	Fe-I	EC-I
SN env	(2) Wind $n=M/4\pi r^2 v_{wind}$ (M=10 ⁻⁵ Mo/yr, v_{wind} =20 km/s)	Fe-w	EC-w

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion HD simulation (2) Result

	Fe-I	Fe-w	EC-I	EC-w
R _{FS} (pc)	4.6	4.3	2.9	2.3
R _{cD} (pc)	4.1	3.5	2.6	1.9
R _{RS} (pc)	3.8	3.3	2.4	1.8
v _{FS} (km/s)	3.1e3	3.7e3	2.0e3	2.0e3
v _{RS} (km/s)	1.4e3	5.1e2	8.8e2	2.9e2
$\overline{T}_{\overline{Fe}}/\overline{T}_{\overline{e}}$ (keV)	130/1.0	50/0.51	57/0.71	62/0.74
$\overline{n}_{\overline{e}}\overline{t}$ (s cm ⁻³)	0.21e11	9.9e11	0.22e11	11.8e11
M _{unshocked} (Mo)	10	8.0	3.9	2.2

- Excellent agreement with analytical one (Truelove & McKee 99)
- Most ejecta unshocked for Fe models. 2025/5/19-21 中性子星の観測と理論

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Constraints on SN1054

- Both Fe core and EC SN still allowed.
 - $M_{\text{unshocked}} {\sim} 8{\text -}10~M_{_0}$ for Fe models.
 - $\mathsf{R}_{\mathsf{shell}}$ by detection to distinguish Fe vs EC.
- Low density required.
 - [ISM] $n_0 < 0.1$ or 0.03 cm⁻³ (EC-I or Fe-I).
 - Consistent with Gal model & HI (Ferriere98, Wallace+94).
 - [wind] M/v_{wind}<10¹⁴ g cm⁻¹ (EC- & Fe-w).
 - High val ($6x10^{18}$ g cm⁻¹; Smith 2013) disfavored.

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Conclusion

- Spectroscopic search of thermal plasma from Crab using SXS. No convincing features found.
- Other results re-evaluated for most stringent upper limit on Mx. SXS added new limits.
- Compared with HD simulation for
 - (a) Fe core, (b) electron capture SN
 - (1) ISM, (2) wind environment.
- Both Fe, EC SN models are still OK.
- The low density is strongly preferred.

1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion What are next?

- Goal: to understand the diversity of SNRs (including compact stars) in the context of SN.
- Tool: high-resolution X-ray spectroscopy. Rich information in dynamics and abundance.
- For *Resolve*, a path paved from ab-initio SN explosion calc to high-resolution spectra for EC channel.
- Advances expected in
 - SN exp calc in other channels (Fe core).
 - 3D NEI HD for SNR evolution.
 - Model generation & evolution of compact stars.

