Results of nightly observations of the Crab pulsar with Imager of MPPC-based Optical photoN counter from Yamagata

(高速撮像システムIMONYを用いたカニパルサーの光学連日観測成果)

Hashiyama et al., 2025 in prep.

2025/5/20 Neutron Star Workshop 2025 @RIKEN

Mizusawa VLBI Observatory Kazuaki Hashiyama

A. CSA. STScl. T. Temim (Princeton University)

PSR B0534+21 (Crab pulsar)

The brightest pulsar from the Earth

- Located at the center of the Pulsar Wind Nebula (PWN), and emits pulses every 34 ms across multiple wavelengths
 - Pulse components are divided into Main Pulse (MP) and Inter-Pulse (IP)
 - Individual pulses are difficult to detect, but we can confirm pulsation by time-averaging
- Unexplained transient radio burst, Giant Radio Pulse (GRP)

The luminosity is >100 times grater than the radio emission fluctuations from the PWN

What triggers GRPs ?

Magnetic Reconnection (MR) is one possible model

- Magnetic energy stored near the light cylinder is released through the reconnection and observed as a GRP (e.g., Philippov+19)
- Does the magnetic field structure change before or after GRPs?
 - Individual pulse, Single Pulse (SP), is useful to validate the reconnection model
 - Time-averaged pulse-profile reduces the structure change, i.e., SP is important

Single Pulses (SPs)

SPs are individual pulses per rotation

Important to validate the reconnection model

We aim to detect peak timing fluctuations of SPs caused by reconnection events

- SP observations in multi-wavelength
 - Radio: Impossible to detect due to the radio emission from the Crab PWN
 - Optical: Possible, but there are some mechanical constraints (e.g., Kanbach+08)
 - X-ray & Gamma-ray: Difficult due to the low photon flux (c.f., ~sec w/NICER; Enoto+21)

Previous talk in FY2023

Future prospects

We estimated the detection possibility of SPs

- Test observation results with the 1.5-m Kanata telescope were used
- We concluded that the 3.8-m Seimei telescope is necessary

Telescopes

Seimei telescope (Opt.)

- Located at Okayama, Japan
- 3.8-m diameter
- Focal length of 22692 mm (F/D~6.0)

Usuda telescope (Rad.)

- Located at Nagano, Japan
- 64-m single dish
- Dual frequency bands centered at 2.3 & 8.4 GHz

Observation

We observed the Crab pulsar in 2/5–11 Feb. 2024

- No observation days were lost due to bad weather
- We performed Rad./Opt. simultaneous observations in 2/7 & 8

However, only about <u>1 hour</u> of simultaneous observation was possible due to cloud cover

Epoch	Weather	Bands	Eff. Obs. Time (Opt)	Eff. Obs. Time (Rad)
2024/2/5	X	Optical	1.2 h	
2024/2/6		Optical	0.37 h	
2024/2/7	2	Optical/Radio	0.33 h	11.4 h
2024/2/8		Optical/Radio	0.53 h	11.4 h
2024/2/9	X	Optical	1.9 h	
2024/2/10	X	Optical	2.2 h	
2024/2/11		Optical	1.3 h	
		Total	7.8 h	22.8 h

Photometer (System details are introduced in the poster session by M. Hasebe)

Imager of MPPC-based Optical photoN counter from Yamagata (IMONY) (Nakamori+21, Hashiyama+24, Sato+24, Hasebe+24, and <u>Nakamori & Hashiyama+25, PASJ (New!</u>)

- Geiger-APD array of 64 pixels has a sensitivity for a single photon
 - Sensor size is <u>200 um/px</u> (Field of View is <u>~15×15 arcsec</u>)
 - Photon detection efficiency is around <u>70% @450 nm</u> (No filter)
- Single pixel readout & time-stamping in 100 ns with FPGAs

Radio results

Result on 2024/2/8 @2.3 GHz

We detected 2782 MPGRPs & 175 IPGRPs with ~11 hours observation

- Occurrence rate at 2.3 GHz was ~253 MPGRPs/h & ~16 IPGRPs/h
- Peak intensity was ~400 kJy in 20 ns, and brightness temperature achieved ~10³¹ K

→ Inconsistent with the black-body radiation, i.e., <u>non-thermal emission origin</u>

Optical results (i)

Detection of the averaged pulse-profile

Photon arrival times were aligned with reference timing t_{JPL} on 2/7, and the rad.-opt. time lag was 258 ± 10 us

 \leftrightarrow Our result was consistent with previous studies (e.g., 255±21 us by Oosterbroek+08)

Credit: Aladir

Optical results (ii)

Optical SPs were successfully detected!

- $\sim 5\sigma$ for MPSP and $\sim 3\sigma$ for IPSP on average
- Considering the photon statistics, we analyzed MPSPs in detail

This page is skipped ..

Stability of pulsation (Karpov+07)

Pulse waveform changed in 2003–2006

- Quasi-periodic change of the pulse beam orientation?
 - Caused by the pulsar's glitch?
 - Change of the neutron star's state?

What about our one-week nightly observation data?

This page is skipped ..

This page is skipped ..

Summary

What is the origin of pulsed emission?

- We focused on the pulsed emission mechanism of the Crab pulsar
 - Giant Radio Pulse (GRP) is a radio transient emission
 - The mechanism is still unclear, but the magnetic reconnection is one possible idea
- We focused on timing fluctuations caused my the reconnection
 - Optical Single Pulses (SPs) are the key to validate the reconnection model
 - We performed the radio and optical simultaneous observations with the Usuda radio telescope and the Seimei telescopes with IMONY in 5-11 Feb. 2024

• No timing fluctuations before or after GRPs were observed

- <u>The critical reason was the cloud cover</u> that reduced the effective simultaneous observation time (we need an additional observation!)

Meanwhile, the peak drift was found through 7 nights observation

- We investigated and confirmed that the drift was not caused by pulsar's glitches
- The optical emission region might move ~24 km in the Outer Gap