

~中性子星の観測と理論~ 研究活性化ワークショップ 2025

On the proton effective mass in dilute nuclear matter

Hiroyuki Tajima Prof. H. Liang group, The University of Tokyo, Japan

<u>H. Tajima</u>, H. Moriya, W. Horiuchi, E. Nakano, and K. Iida, PLB **851**, 138567 (2024). <u>田島裕之</u>,「ポーラロン描像から探る核物質の世界」,日本物理学会誌 (掲載受理)

Outline

- Proton effective mass in neutron-rich matter
- Short-range correlations
- Numerical results
- Summary

Outline

- Proton effective mass in neutron-rich matter
- Short-range correlations
- Numerical results
- Summary

In this talk...

We are interested in impurity-like protons in dilute nuclear matter relevant to at the surface of neutronrich nuclei and astrophysical environment.

Effective mass m^* in the kinetic energy

$$\varepsilon_{\boldsymbol{k}} = \frac{k^2}{2m^*}$$

Question: Is the nucleon effective mass in medium larger or smaller compared to bare one in vacuum?

H. Tajima, et al., PLB 851, 138567 (2024).

Recent theoretical studies of nucleon effective mass

Astrophysics community seems to accept smaller effective mass and examines the case with only $m^* < m$

A. S. Schneider, et el, PRC 100, 055802 (2019)

Larger $m^* \rightarrow$ Good for supernova

Ouark DOF becomes important

On the effective mass of proton in neutron star matter

G. Baym, H. A. Bethe, and C. J. Pethick, Neutron star matter, Nucl. Phys. A 175, 225 (1971).

$$\frac{m_{\text{bare}}}{m_p^*} = Z \left[1 + \text{Re} \frac{\partial^2 \Sigma_p(\boldsymbol{k}, \omega)}{\partial k^2} \right]^-$$

Z: quasiparticle residue (w.f. renormalization) Σ_p : proton self-energy

 $m_p^*(k)$ is the effective mass of a single proton in pure neutron matter. Not having calculations of $m_p^*(k)$ we take it to be equal to m_n . One expects however that because of the strong proton-neutron attraction a single proton in a pure neutron gas will carry a considerable dressing cloud of neutrons with it, which will lead to a significant enhancement of the proton effective mass. This should be contrasted with symmetric nuclear matter where empirically m_p^*/m_n on the Fermi surface is close to unity (see

Larger effective mass

$$\frac{m_{\rm bare}}{m_p^*} < 1$$

Protons in neutron matter ≃ Fermi polaron

Impurity in Fermi sea -Fermi polaron-

F. Chevy, Physics 9, 86 (2016).

- Impurity (~proton)
 - Medium (~neutron)

Resonant interaction (np interaction)

Effective mass of Fermi polaron in ultracold atom experiment

Photo: http://www.sci.osaka-cu.ac.jp/phys/laser/research_Li.html

Why are there such differences?

- Can we bridge two cases with large and small effective masses of a proton in neutron-rich matter?
- When is the proton effective mass larger (smaller) than the bare mass?

Why are there such differences?

- Can we bridge two cases with large and small effective masses of a proton in neutron-rich matter?
- When is the proton effective mass larger (smaller) than the bare mass?

Outline

• Proton effective mass in neutron-rich matter

- Short-range correlations
- Numerical results
- Summary

Short-range correlations

Power law in the momentum distribution

Tan's contact (k⁴ coefficient)

From short-range to long-range = From dilute to dense

Comparing the interaction range *r* with the interparticle distance $\sim 1/k_{\rm F}$

Diagrammatic representation of short-range and long-range correlations

- Short-range correlations
- = Large momentum compared to $k_{\rm F}$

Particle-particle ladder (ultraviolet divergence for contact interaction)

$$\sum \sum \frac{1 - f(\xi_{k+q}) - f(\xi_k)}{E - \xi_{k+q} - \xi_k} \implies \sim \Lambda_{\text{cutoff}} \simeq \frac{1}{r_{\text{eff}}}$$
$$f(\xi_p) \to 0$$

- Long-range correlations
- = Small momentum compared to $k_{\rm F}$

Particle-hole bubble (important for long-range interaction (e.g., Coulomb))

$$\sim \sum \frac{f(\xi_{k+q}) - f(\xi_k)}{E + \xi_k - \xi_{k+q}} \stackrel{\bullet}{\longrightarrow} \sim \text{constant}$$
$$f(\xi_n): \text{Fermi distribution function}$$

Outline

- Proton effective mass in neutron-rich matter
- Short-range correlations
- Numerical results
- Summary

Interaction potential

Spin-triplet neutron-proton correlations

Particle-particle Ladder for short-range correlations

 $\Gamma_{\sigma\sigma'}(\boldsymbol{k},\boldsymbol{k}';\boldsymbol{q},i\nu_{\ell}) = \left[L_1(\boldsymbol{q},i\nu_{\ell})\delta_{\sigma,\sigma'} + L_0(\boldsymbol{q},i\nu_{\ell})\left(1-\delta_{\sigma,\sigma'}\right)\right]\gamma_k\gamma_{k'}$

Self-energy of protonic polaron

Self-energy within the particle-particle ladders (short-range correlations)

$$\Sigma_{p\sigma}(\boldsymbol{k}, i\omega_n) = T \sum_{\boldsymbol{q}} \sum_{\sigma'} \sum_{i\nu_{\ell}} \Gamma_{\sigma\sigma'}(\boldsymbol{q}/2 - \boldsymbol{k}, \boldsymbol{q}/2 - \boldsymbol{k}; \boldsymbol{q}, i\nu_{\ell}) G_n(\boldsymbol{q} - \boldsymbol{k}, i\nu_{\ell} - i\omega_n)$$

$$G: \text{neutron propagator}$$

Reproducing cold atom experiments quantitatively

<u>HT</u> and S. Uchino, NJP, **20**, 073048 (2018).

M. Ota, et al., PRA 95,053623 (2017).

From clusters to polaronic protons $A_{\mathrm{p}\sigma}(\boldsymbol{k}=\boldsymbol{0},\omega)=-\frac{1}{\sigma}\mathrm{Im}G_{\mathrm{p}\sigma}(\boldsymbol{k}=\boldsymbol{0},\omega)$ **Proton spectral weight:** : proton **Repulsive polaron** : neutron 10 **Deuteron** 0 $E_{d} = -2.22 \text{ MeV}$ ω [MeV] Alpha particle $E_{a}/2 = -14.2 \text{ MeV}$ -20 T = 2.0 MeV-30 8 ↑ 1 High density 0.2 0.4 0.6 0.8 Low density $k_{\rm F} \,[{\rm fm}^{-1}]$

Attractive polaron

Neutron Fermi momentum

Proton effective mass

Larger effective mass..., so what?

Beneficial for SN explosion

A. S. Schneider, et el, PRC 100, 055802 (2019).

New insights on Cooling Curve

D. Page, Fifty Years of Nuclear BCS 324- $\frac{\Xi}{\frac{1}{2}}$ 447 (2013).

Unbound systems can be bound

PRC 104, 065801 (2021).

Bipolaronic diproton

PLB 851, 138567 (2024).

Outline

- Proton effective mass in neutron-rich matter
- Short-range correlations
- Numerical results
- Summary

Summary

- We showed the enhanced effective mass M_{eff} of protons in dilute asymmetric nuclear matter.
- While the short-range correlations enhance $M_{\rm eff}$ being consistent with the Baym-Bethe-Pethick conjecture and the cold-atom experiment, the long-range correlations suppress $M_{\rm eff}$ at high density.
- Larger M_{eff} may give significant impact on astrophysical phenomena (e.g., supernova, cooling, clustering, etc...).

Backup slides

Definition of the polaron effective mass

Fermi polaron spectra

Y. Sekino, HT, and S. Uchino, Phys. Rev. Research **2**, 023152 (2020).

 $k_{\rm F}$: Fermi momentum of background Fermi sea

Protonic polaron propagator

$$G_{i}(\boldsymbol{k},\omega) = \frac{1}{\omega + i\delta - \varepsilon_{\boldsymbol{k},i} - \Sigma_{i}(\boldsymbol{k},\omega)}$$
$$\simeq \frac{Z}{\omega + i\delta - \frac{k^{2}}{2M^{*}} - E_{P} + i\Gamma/2}$$

Expanding self-energy at $k = 0^*$

$$E_{\mathrm{P}} = \mathrm{Re}\Sigma_{\mathrm{i}}(\mathbf{0}, E_{\mathrm{P}}),$$

$$Z = \left[1 - \operatorname{Re}\left(\frac{\partial \Sigma_{i}(\mathbf{0},\omega)}{\partial \omega}\right)_{\omega = E_{\mathrm{P}}}\right]^{-1},$$

$$\frac{M}{M^*} = Z \left[1 + M \operatorname{Re} \left(\frac{\partial^2 \Sigma_{i}(\boldsymbol{k}, E_{P})}{\partial k^2} \right)_{\boldsymbol{k} = \boldsymbol{0}} \right]$$

$$\Gamma = -2Z \operatorname{Im} \Sigma_{i}(\mathbf{0}, E_{P}).$$

*Here we consider dilute limit of proton at $T \neq 0$ where $k_{\rm Fp} \rightarrow 0$

Fermi polarons in ultracold atoms

Attractive and repulsive Fermi polarons have been observed in ⁶Li population-imbalanced Fermi gases with a positive scattering length a.

Thermal evolution of Fermi polaron spectra

Z. Yan, et al., PRL **122**, 093401 (2019).

Interaction dependence of polaron contact

G. Ness, et al., PRX 10, 041019 (2020).

Radio-frequency (RF) spectroscopy in cold atoms

Polaron spectral function

$$A_{i}(\mathbf{k},\omega) = -\frac{1}{\pi} \operatorname{Im} G_{i}(\mathbf{k},i\omega_{n} \to \omega + i\delta)$$

Injection RF spectroscopy

$$I_{\rm in}(\omega) = 2\pi \Omega_{\rm R}^2 \sum_{\boldsymbol{k}} f(\varepsilon_{\boldsymbol{k},{\rm ref.}}) A_{\rm i}(\boldsymbol{k}, \varepsilon_{\boldsymbol{k},{\rm i}} + \omega)$$

Ejection RF spectroscopy

strongly-interacting

weakly-interacting

E

|3>

inject

|1>

eject

2>

$$I_{\rm ej}(\omega) = 2\pi \Omega_{\rm R}^2 \sum_{\boldsymbol{k}} f(\varepsilon_{\boldsymbol{k},\rm i} - \omega) A_{\rm i}(\boldsymbol{k}, \varepsilon_{\boldsymbol{k},\rm i} - \omega)$$

momentum p

Polaron-molecule transition

First-order transition within the single polaron ansatz at T = 0<u>Tan's contact</u> $C = -4\pi m \frac{dE}{da^{-1}}$

Discontinuous change at the transition

G. Ness, et al., PRX 10, 041019 (2020).

Smooth due to the finite T and finite momentum

Proton effective mass

nuclear matter where empirically m_p^*/m_n on the Fermi surface is close to unity (see

Polaron equation of state

Ground-state energy

$$E = E_{\rm FG} \left[1 + \frac{5}{3} \frac{E_{\rm P}}{E_{\rm F}} \left(\frac{\rho_{\rm i}}{\rho_{\rm m}} \right) + \frac{M}{M^*} \left(\frac{\rho_{\rm i}}{\rho_{\rm m}} \right)^{\frac{5}{3}} + \cdots \right]$$

 $\rho_{i(m)}$: impurity (majority) density $E_{\rm FG}$: majority ground-state energy w/o impurities $E_{\rm F}$: majority Fermi energy w/o impurities

Spin-dipole frequency

Dipole oscillation of polaron cloud

At unitarity limit Polaron energy $E_{\rm P} \simeq -0.6E_{\rm F}$ Effective mass $M^* \simeq 1.17M$

A. Sommer et al 2011 New J. Phys. 13 055009

Protons in neutron star matter

Protons may exist due to the beta equilibrium, but its fraction is smaller than neutron's one. Moreover, protons have a strong isoscalar (spin-triplet) interaction with a neutron.

Thermal evolution of Fermi polarons

<u>HT</u> and S. Uchino, Phys. Rev. A 99, 063606 (2019).

Thermal evolution of protonic polaron

