超小型X線衛星 NinjaSat による パルサー航法の実証実験

玉川徹 (理研), 榎戸輝揚 (京都大/理研), 北口貴雄, 加藤陽, 三原建弘 (理研), 岩切渉 (千葉大), 沼澤正樹 (都立大), 周圓輝, 内山慶祐 (理研/東理大), 武田 朋志 (広島大), 吉田 勇登, 林昇輝, 重城新大, 渡部 蒼汰, 青山 有未来, 岩田 智子, 髙橋 拓也 山埼 楓 (理研/東理大), 喜多 豊行 (千葉大), 土屋草馬, 中野遥介 (理研/東理大), 一番ヶ瀬麻由 (立教 大), 佐藤 宏樹 (理研/芝浦工大), Chin-Ping Hu (彰化師範大/理研), 高橋 弘充 (広島大), 小高 裕和 (大阪大), 丹波 翼 (ISAS/JAXA), 谷口 絢太郎 (理研/早大)

大田尚享 (理研/東理大)

2025/05/21 中性子星ワークショップ

パルサー航法の研究背景

- ・深宇宙探査においては、GPS による測位が不可能。
- ・ミリ秒周期でX線強度が変動をするパルサーを観測して、 準自律的な測位を行う、X線パルサー航法の研究が発展。
- ・3点測量法(運動学的手法)による実証例
 - NICER
 - XPNAV
- ・ダイナミクス最適化による実証例
 - POLAR
 - Insight-HXMT
- ・いずれも大型 / 中型機器による実証。
- ・リソースが限られる深宇宙探査では装置の小型化が重要。

Solar System Barycenter

- •太陽同期極軌道
 - ・軌道投入高度 530 km (2023年 11月)
 - · 軌道周期約 95 分
- ・時刻・位置情報を GPS より取得 (NMEA format)

<u>Gas Multiplier Counter: GMC</u>

- ・観測エネルギー帯域:2–50 keV
- 有効面積 (1台あたり): 16 cm² @ 6 keV
- •X線検出時間分解能:61 µs

研究目的

1UサイズのガスX線検出器 GMC はパルサー航法のための センサーとして有用であるか検証。

<u>パルサーX線信号の解析手法</u>

<u>NinjaSat で観測したかにパルサー畳み込み波形</u>

- 8日間かにパルサーを連続観測。 (実観測時間 80 ksec)
- NinjaSat 搭載の姿勢制御系より推定された 軌道情報から、X線検出時刻を、太陽系重心 相当に変換。(バリセントリック補正)
- ・かにパルサーの周期、周期変化、時刻原点は Jodrell Bank (電波観測)のデータを使用。
- ・33.8 ms 周期の位相がコヒーレントなパルス を確認。

03 7.0 X 6.0 Count 5.0 4.0 كوم 734 00737 009 + 731 737 ☐ ⋚ 730 729 728 727

- ・有意度の違いを利用して、かにパルサー観測データから衛星軌道を求める。

・NinjaSat の観測データも衛星軌道の補正をしない場合、かにパルサーの波形が崩れる。

楕円軌道の形状

- 離心率 e

地球に対する軌道面

- •軌道傾斜角 i
- 昇交点 Ω

<u>軌道面内の楕円軌道の向き</u>

近点引数 ω

時間情報

•平均近点離角 M

- ・軌道要素は、北アメリカ航空宇宙防衛司令部 (NORAD) により随時更新。

・地球低軌道モデル SGP4 では、ケプラー軌道要素と大気抵抗係数 (B) がパラメータ。

https://celestrak.org/NORAD/elements/graph-orbit-data.php?CATNR=58341

- ・軌道要素は、北アメリカ航空宇宙防衛司令部 (NORAD) により随時更新。

・地球低軌道モデル SGP4 では、ケプラー軌道要素と大気抵抗係数 (B) がパラメータ。

https://celestrak.org/NORAD/elements/graph-orbit-data.php?CATNR=58341

軌道要素変化に対する有意度変化

- ・いずれも軌道要素の値を変えることで、パルス有意度が変化。

・観測開始時の NORAD 値から、軌道要素を1個ずつ変化させたパルス有意度の分布。

<u>ベイズ最適化によるパラメータサーチ</u>

- ・使用ツール:GPyOpt
- 目的関数:パルス有意度
- 探索パラメータ ISGP4の7個の軌道要素
- ・最初の既知データ
 - ・ 観測開始時の NORAD の 軌道 青報 ・ 探索範囲のランダムな1 ●点
- ・1000回イチレー

NORAD の初<mark>期情報より、パルス</mark>有意度が 高いパラメータセットを獲得。

- ・パルサーによる推定軌道と GPS の位置差分 (95% 区間):
 - ・ノルム (L2) <152 km
 - パルサー方向成分 < 19 km
- 約 500 ksec 経過時には、 NORAD の初期情報よりパルサー から推定した位置の方が正確。

準自律的な軌道情報の更新に、 GMC により観測したパルサー 信号は有用。

(km)

置差

6

S L S C

time (\times 10² ks)

- NinjaSat GMC で検証。 補正を施し、33.8 ms 周期の位相がコヒーレントなパルスを確認。 地球低軌道モデル SGP4 の軌道要素を、パルス有意度を目的関数としたベイズ 最適化により探索。
- を観測した期間において、 95%の区間で 152 km 以内。

パルサーからのX線信号をもとに衛星の測位を行うパルサー航法の実証を、

かにパルサーの8日間の観測データに、衛星軌道情報をもとにバリセントリック

・ 軌道要素最適値により算出した位置とGPSによる位置のずれは、かにパルサー

<u>NinjaSat のX線イベント時刻測定</u>

Onboard process

 $T_{\text{evt}} = T_1 + \frac{T_2 - T_1}{C_2 - C_1} \times (C_{\text{evt}} - C_1)$

NinjaSat GMC 時刻付精度

<u>軌道要素変化に対する有意度変化 (広域)</u>

<u>Insight-HXMTの結果</u>

Best Estimated Value of the Elements and Errors (3σ)

Payload	Orbital Element Deviation	Δa	Δe	Δi	$\Delta \omega$	$\Delta\Omega$	Δw
-		(m)	10^{-3}	(°)	(°)	(°)	(°)
LE	Deviation	7.02	-0.38	0.01	0.01	0.003	0.003
	Error (3σ)	11.75	1.03	0.02	0.06	0.09	0.09
ME	Deviation	3.07	-0.11	0.005	0.01	0.007	0.006
	Error (3σ)	16.44	1.28	0.03	0.064	0.11	0.11
HE	Deviation	4.89	-0.58	0.006	0.009	0.002	0.002
	Error (3σ)	7.58	0.59	0.01	0.03	0.05	0.05
All detectors	Deviation	5.25	-0.50	0.007	0.01	0.002	0.002
	Error (3σ)	6.40	0.52	0.01	0.03	0.04	0.04

Zheng et al., 2019, ApJS

Insight-HXMT と NinjaSat の検出

NinjaSat (GMC)					
Energy band	2–50 keV				
Effective area	16 cm ² @ 6 keV				
Exposure time	1.0 × 10 ⁵ sec				

Insight-HXMT

	High Energy X-ray Telescope	Medium Energy X-ray Telescope	Low Energy X-ray Telescope
Energy band	20–250 keV	5–30 keV	1–15 keV
Effective area	5000 cm ²	952 cm ²	384 cm ²
Exposure time	1.8 × 10 ⁵ sec	1.9 × 10 ⁵ sec	1.2 × 10 ⁵ sec

Zheng et al., 2019, ApJS

出器の	比較

レンジ計測誤差

実測波形による見積もり

$$\sigma_{\rm TOA} = \frac{1}{2} W / \rm{SNR}$$

$\sigma_{\rm range} = c \sigma_{\rm TOA}$ Suneel I. Sheikh et al.

 $SNR = 1.4 \times 10^{2}$ $\sigma_{TOA} = 4.8 \ \mu sec$ $\sigma_{range} = 1.4 \text{ km}$

レンジ計測誤差実測波形と理論計算の比較

- の理論計算と、NinjaSatの実測波形で比較。
- NinjaSat の実測では、パルサーに加えて星雲も 視野に入り、 pulsed fraction は小さくなる。

