presolution study by MC

Genki Nukazuka (RIKEN)

Single μ^- MC for angle resolution evaluation

- It must be useful if we can estimate hit position on the inner surface of EMcal using INTT hit information.
 We can make such rough estimation table from
- We can make such rough estimation ta single µ MC.
- The uncertainty of the estimation is a hint of tracking resolution.

Basic idea of angular resolution evaluation

$$\vec{r} = \vec{r}_{\text{mes.}} - \vec{r}_{\text{vertex}} \Big|_{\vec{r}_{\text{vertex}} = (0,0,0)}$$

- EMCal hit: the innermost (smallest p) G4Hit on EMCal
 - $\dot{r}_{\rm EMCal}$ innermost
- INTT tracklet vector: a line from G4Hit on the inner barrel to that on
 - $\vec{r}_{\text{INTT tracklet}} = \vec{r}_{\text{INTT outer}} \vec{r}_{\text{INTT inner}}$
- A vector from INTT inner barrel to EMcal hit:
 - $\vec{r}_{\text{inner} \to \text{EMCal}} = \vec{r}_{\text{EMCal}} \vec{r}_{\text{inner}}$
- Angle resolution evaluator:

$$= \phi_{\text{inner} \to \text{EMcal}} - \phi_{\text{INTT tracklet}}$$

Angle resolution:

$$\frac{\Delta\phi}{\Gamma}$$
,

$$\Delta \phi$$

where μ and σ are determined by gaussian fit to $\Delta \phi$ distribution

Pilot run: Condition

Setup:

- Single μ^- MC with $\vec{p} = (0, 1, 0)$ GeV/c
 - i.e. no angular distribution
- $\vec{r}_{vertex} = (0,0,0)$ cm
- Beam pipe, MVTX, INTT, TPC, TPOT, and EMCal are in the simulation.
- 2000 events
- It took long time. Is 80 min / 100k OK?

Pilot run: is a hit on INTT/EMCal?

— Events in this row: no G4hit on EMcal

Why was no hit made on EMCal for large fraction of events?

Pilot run: #G4hit for each detector

Sun Mar 23 19:47:48 2025

TPC also has no hit for 40% of events.

Sun Mar 23 19:52:27 2025

- x vs y position of G4hit. No event/hit selections were applied.
- 2000 events are accumulated.
- Trajectory of muons are clearly seen. Some hits were generated in totally different directions from the beam.

Pilot run: Parameter distributions

hit_emcal_innermost.Y():hit_emcal_innermost.X() {is_hit_emcal_innermost}

- (Left) x_{EMcal} vs y_{EMCal} distribution

Pilot run: Parameter distributions

hit_emcal_innermost.Y():hit_emcal_innermost.X() {is_good_event && hit_emcal_innermost.Rho()<99}

• (Left) $x_{\rm EMcal}$ vs $y_{\rm EMCal}$ distribution with a cut of $\rho_{\rm EMCal}$ < 99 cm

hit_emcal_innermost.Rho() {is_hit_emcal_innermost}

Pilot run: Event displays

Cuts

- At least 1 EMCal hit
- At least 2 INTT hits
- $\rho_{\rm EMCal}$ < 99 cm

Pilot run: φ angle resolution

run 1: Condition

Setup:

- Single μ^- MC with $p_T = 1$ GeV/c
- $\phi = [-\pi, \pi]$
- $\eta = 0$
- $\vec{r}_{vertex} = (0,0,0)$ cm
- Beam pipe, MVTX, INTT, TPC, TPOT, and EMCal are in the simulation.
- ~50k events

Run	#event	Beam	Momentum (GeV/c)	φ dist (rad)	ηdist	vertex (cm)	Δφ mean (mrad)	Δφ std. dev. (mrad)	Δφ resolution (%)
Pilot	2k	μ-	(p _x , p _y , p _z)= (0, 1, 0)	fixed at π/2	fixed at 0	fixed at (0, 0, 0)	186	2.87	1.54
1	50k	μ-	p⊤ = 1 GeV	[-π, π]	fixed at 0	fixed at (0, 0, 0)			

Run 1: Parameter distributions

vec_beam.Phi()

- ϕ_{beam} distribution
- Beam was generated uniformly in azimuth •

Run1: Parameter distributions

hit_emcal_innermost.Y():hit_emcal_innermost.X() {is_hit_emcal_innermost}

- (Left) x_{EMcal} vs y_{EMCal} distribution
- The distribution is uniform in azimuth
- (Below) $\rho_{\text{EMCal}} = \sqrt{x_{\text{EMCal}}^2 + y_{\text{EMCal}}^2}$ distribution

Run1: Parameter distributions

hit_emcal_innermost.Y():hit_emcal_innermost.X() {is_good_event}

- (Left) x_{EMcal} vs y_{EMCal} distribution with cuts:
 - at least 1 EMCal hit
 - at least 2 INTT hits

• (Below) $\rho_{\text{EMCal}} = \sqrt{x_{\text{EMCal}}^2 + y_{\text{EMCal}}^2}$ distribution

hit_emcal_innermost.Rho() {is_hit_emcal_innermost}

Run1: Parameter distributions

hit emcal innermost.Y():hit emcal innermost.X() {is good event && hit emcal innermost.Rho()<99

- (Left) x_{EMcal} vs y_{EMCal} distribution with cuts:
 - at least 1 EMCal hit
 - at least 2 INTT hits
 - $\rho_{\rm EMCal}$ < 99 cm

• (Below) $\rho_{\text{EMCal}} = \sqrt{x_{\text{EMCal}}^2 + y_{\text{EMCal}}^2}$ distribution

Run1: φ of beam and INTT tracklet

Counts

10²

10

Cuts

- At least 1 EMCal hit
- At least 2 INTT hits
- $\rho_{\rm EMCal}$ < 99 cm

vec_intt_tracklet.Phi():vec_beam.Phi() {is_good_event && hit_emcal_innermost.Rho()<99}

Run1: ϕ angle resolution

Run1 : φ angle resolution as a function of φ_{beam}

Cuts

- At least 1 EMCal hit
- At least 2 INTT hits
- $\rho_{\rm EMCal}$ < 99 cm

Run1:φangle

Cuts

- At least 1 EMCal hit
- At least 2 INTT hits
- $\rho_{\rm EMCal}$ < 99 cm
- $|\phi_{tracklet-beam} \mu_{\phi_{tracklet-beam}}| < 2\sigma_{\phi_{tracklet-beam}}$

Mean and std. dev. are evaluated for each ϕ_{beam} bin. The bin width is currently $2\pi/50$.

Fittings were performed 10 times for each ϕ_{beam} bin, iteratively.

Run1 : φ angle resolution as a function of φ_{beam}

Cuts

- At least 1 EMCal hit
- At least 2 INTT hits
- $\rho_{\rm EMCal} < 99$ cm
- $|\phi_{tracklet-beam} \mu_{\phi_{tracklet-beam}}| < 2\sigma_{\phi_{tracklet-beam}}$

Run	#event	Beam	Momentum (GeV/c)	φ dist (rad)	η dist	vertex (cm)	Δφ mean (mrad)	Δφ std. dev. (mrad)	Δφ resolution (%)
Pilot	2k	μ-	1	fixed at π/2	fixed at 0	fixed at (0, 0, 0)	186	2.87	1.54%
1	50k	μ-	1	[-π, π]	fixed at 0	fixed at (0, 0, 0)	186	3.95	2.12%
2	50k	μ-	2	[-π, π]	fixed at 0	fixed at (0, 0, 0)	92.1	2.34	2.54%
3	50k	μ-	4	[-π, π]	fixed at 0	fixed at (0, 0, 0)	47.2	4.02	8.52%
4	50k	μ-	0.5	[-π, π]	fixed at 0	fixed at (0, 0, 0)	385	8.85	2.30%

