The 15th International Conference on Hypernuclear and Strange Particle Physics (HYP2025)

Test the two-pole structure of the $\Xi(1820)$ state

W.-H. Liang^{1*}, R. Molina², E. Oset², C.-W. Xiao¹, M.-Y. Duan³, J. Song⁴, Z.-F. Sun⁵

¹Guangxi Normal University, ²Universidad de Valencia, ³Southeast University,

⁴Beihang University, ⁵Lanzhou University

Content

We present a new interpretation for the observed $\Xi(1820)$ resonance in the recent BESIII measurement of the $K^-\Lambda$ mass distribution in the $\psi(3686) \to K^-\Lambda\bar\Xi^+$ decay. We recall that the chiral unitary approach for the interaction of pseudoscalar mesons with the baryons of the decuplet predicts two states for the $\Xi(1820)$ resonance, one around 1824 MeV and narrow, and another one around 1875 MeV and wide. We show how the consideration of the two $\Xi(1820)$ states provides a natural explanation to the BESIII data. Furthermore, we propose the reactions $\psi(3686) \to \bar\Xi^+\bar K^0\Sigma^{*-}$, $\Omega_c \to \pi^+(\pi^0,\eta)\pi\Xi^*$ and $\Omega_c \to \pi^+(\pi^0,\eta)\bar K\Sigma^*$ in order to show evidence for the existence of two $\Xi(1820)$ states. For the $\psi(3686) \to \bar\Xi^+\bar K^0\Sigma^{*-}$ decay, the phase space for $\bar K^0\Sigma^{*-}$ production reduces the effect of the lower mass resonance, magnifying the effect of the higher mass resonance that shows clearly over the phase space. When the $\Omega_c \to \pi^+(\pi^0,\eta)\bar K\Sigma^*$ reactions are studied, both peaks for the two $\Xi(1820)$ states are observed in the $\bar K\Sigma^*$ mass distributions. For the $\Omega_c \to \pi^+(\pi^0,\eta)\pi\Xi^*$ decays, the $\pi\Xi^*$ mass distributions obtained in the different reactions studied are quite different. The lower mass resonance is clearly seen as a sharp peak, but the higher mass resonance manifests itself through an interference with the lower one that leads to a dip in the mass distribution around $1850\,\mathrm{MeV}$. Its observation in coming upgrades of present facilities will shed light on the existence of two $\Xi(1820)$ states and their nature.

Reference

- [1] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 109 (2024) 072008.
- [2] R. Molina, W.-H. Liang, C.-W. Xiao, Z.-F. Sun, and E. Oset, *Phys. Lett. B* 856 (2024) 138872.
- [3] W.-H. Liang, R. Molina, and E. Oset, Phys. Rev. D 110 (2024) 036005.
- [4] M-Y Duan, J. Song, W-H Liang, and E. Oset, Eur. Phys. J. C 84 (2024) 947.

Field of Research: Interactions of mesons and baryons with strangeness / Strangeness in hadron structure /

Experiment / Theory: Theory **Contribution Type:** Invited talk