The 15th International Conference on Hypernuclear and Strange Particle Physics (HYP2025)

Hyperon Effects on Nuclear Structure within Skyrme-Hartree-Fock method

Xian-Rong Zhou^{1*}, Huai-Tong Xue², Xin-Li¹, H.-J. Schulze³, H. Sagawa⁴

¹Department of Physics, East China Normal University, Shanghai 200241, China

²College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

³INFN Sezione di Catania, Dipartimento di Fisica, Universitá di Catania, 95123 Catania, Italy

⁴Center for Mathematical Sciences, University of Aizu Aizu-Wakamatsu, Fukushima 965-8580, Japan

Content

The deformed Skyrme-Hartree-Fock (SHF) approach, including its beyond-mean-field extension and localization function analysis, provides comprehensive insights into how the Λ hyperon influences deformation, excitations, and single-particle properties of hypernuclei. The inherent robustness of cluster structures dictates the stability of hypernuclei against enhanced hyperon-nucleon (YN) interactions. 20 Ne, characterized by a robust prolate $\alpha^{-12}C^{-\alpha}$ cluster, maintains its deformation in $^{28}{}_{\Lambda}$ Ne even with strengthened YN forces. Beyond-mean-field SHF calculations for the Ne isotopic chain ($^{20\text{-}34}$ Ne) successfully predict low-lying spectra (J≤6) and E2 transition rates, confirming shape coexistence involving ground-state rotational bands and β vibrational bands in 20,22,24 Ne. Crucially, the Λ hyperon is found to fundamentally alter collective excitation modes. The Λ single-particle spectra exhibit remarkable spin symmetry across light to heavy hypernuclei, attributed to the intrinsically small Λ -nucleon spin-orbit force. This symmetry manifests as a consistent linear relationship between the reduced spin-orbit splitting Δ Es.o.. Notably, in light p-shell hypernuclei (e.g., Λ -hyperisotopes of carbon and N=6 hyperisotones, A ≤ 15), a novel phenomenon emerges: the interplay between deformation and weak binding can produce deformed halo structures in Λ 1p states, challenging the conventional association of halo solely with spherical shapes.

Reference

- [1] H.T. Xue, J.W. Cui, Q. B. Chen, Xian-Rong Zhou*, and H. Sagawa, Phys. Rev. C 110, 044310 (2024).
- [2] Xin Li, C.F. Chen, Xian-Rong Zhou*, and Zhongzhou Ren, Phys. Rev. C 109, 064301 (2024).
- [3] Huai-Tong Xue, Yi-Fan Chen, Q. B. Chen, Y. A. Luo, H.-J. Schulze, and Xian-Rong Zhou*, Phys.Rev.C107, 044317(2023).
- [4] Huai-Tong Xue, Q. B. Chen, Xian-Rong Zhou*, Y. Y. Cheng and H.-J. Schuzle, Phys. Rev. C 106, 044306 (2022).

Field of Research: Production, structure and decay of hypernuclei

Experiment / Theory: Theory

Contribution Type: Contribution talk