The 15th International Conference on Hypernuclear and Strange Particle Physics (HYP2025)

Exploring Λ and Σ Resonances near 1670 MeV with HypTPC at J-PARC

Hae In Lee^{1*}, Jung Keun Ahn¹, Seongbae Yang¹, Dahyun Choi¹, Seohyeon Kang¹, Kiyoshi Tanida², Hiroyuki Sako², Yudai Ichikawa³, Shuhei Hayakawa³, Ryuta Saito³, Kohki Amemiya³, Kaito Shimazaki³, Ruri Sasaki³, Shin Hyung Kim⁴, Jae Jin Lee⁴ and Akinori Higashi⁵

¹Department of Physics, Korea University, Seoul 02841, Republic of Korea

²Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1196, Japan

³Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan

⁴Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

⁵Research Center for Nuclear Physics, The University of Osaka, Ibaraki, Osaka 567-0047, Japan on behalf of E72 collaboration

Content

Understanding hyperon resonances in the low-energy regime presents a significant challenge due to overlapping states, broad widths and limited experimental separation. Our focus is on the 1670 MeV mass region, where both Λ and Σ resonances are expected but not yet fully understood. A precise investigation of this region can provide valuable insights into the dynamics of strange quark systems.

The J-PARC E72 experiment aims to measure cross sections for hyperon resonances in K^-p reactions near 1670 MeV using the Superconducting Hyperon Spectrometer (SHS) at the K1.8BR beamline. The central tracking detector of the SHS, the HypTPC, provides full three-dimensional tracking of charged particles with wide angular acceptance, enabling the simultaneous reconstruction of all K^-p reactions [1].

In the Λ sector, while $\Lambda(1670)$ ($J^P=1/2^-$) and $\Lambda(1690)$ ($J^P=3/2^-$) resonances have been reported, there is emerging evidence for a new narrow resonance in this region. This suggestion is supported by early observations of a non-even angular distribution in the differential cross section of $\eta\Lambda$ production from K^-p reactions [2].

In the Σ sector, the $\Sigma(1670)$ resonance displays notable discrepancies between formation and production experiments. Formation experiments report a single resonance with $J^P = 3/2^-$, while production experiments indicate two overlapping states with differing angular distribution of $\Sigma \pi$ and $\Sigma \pi \pi$ final states [3].

This presentation will discuss the anticipated results from the E72 experiment based on Geant4 simulation studies and evaluate the feasibility of clarifying the nature of these resonances.

Reference

- [1] S.H. Kim et al., Nucl. Instrum. Methods Phys. Res. A 940, 359-370 (2019).
- [2] A. Starostin et al., Phys. Rev. C 64, 055205 (2001).
- [3] J.J.M. Timmermans et al., Nucl. Phys. B 112, 77-106 (1976).

Field of Research: Interactions of mesons and baryons with strangeness

Experiment / Theory: Experiment **Contribution Type:** Contribution talk