The 15th International Conference on Hypernuclear and Strange Particle Physics (HYP2025)

Machine Learning Light Hypernuclei

Presenter/Primary Isaac Vidaña

Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via Santa Sofia 64, I-05123 Catania, Italy

Content

We employ a feed-forward artificial neural network (ANN) to extrapolate at large model spaces the results of *ab-initio* hypernuclear No-Core Shell Model calculations for the Λ separation energy B_{Λ} of the lightest hypernuclei, ${}_{\Lambda}{}^{3}H$, ${}_{\Lambda}{}^{4}H$ and ${}_{\Lambda}{}^{4}He$, obtained in computationally accessible harmonic oscillator basis spaces using chiral nucleon-nucleon, nucleon-nucleon and hyperon-nucleon interactions. The overfitting problem is avoided by enlarging the size of the input dataset and by introducing a Gaussian noise during the training process of the neural network. We find that a network with a single hidden layer of eight neurons is sufficient to extrapolate correctly the value of the Λ separation energy to model spaces of size N_{max} =100. The results obtained are in agreement with the experimental data in the case of ${}_{\Lambda}{}^{3}H$ and the 0^{+} state of ${}_{\Lambda}{}^{4}He$, although they are off of the experiment by about 0.3 MeV for both the 0^{+} and 1^{+} states of ${}_{\Lambda}{}^{4}H$ and the 1^{+} state of ${}_{\Lambda}{}^{4}He$. We find that our results are in excellent agreement with those obtained using other extrapolation schemes of the No-Core Shell Model calculations, showing this that an ANN is a reliable method to extrapolate the results of hypernuclear No-Core Shell Model calculations to large model spaces.

Reference

[1] I. Vidaña, Nucl. Phys. A 1032, 122625 (2023)

Field of Research: Production, structure and decay of hypernuclei

Experiment / Theory: Theory **Contribution Type:** Invited talk