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Jet asymmetries
sPHENIX is a jet detector. Jet asymmetries are good choices. 
Possible observables are, for example,

• inclusive jet ← I’m working on it.

‣ Theory: PRD83(2001)034021

‣ STAR: PRD106(2022)072010


• di-jet

‣ Theory: PRD69(2004)094025

‣ STAR:


• photon-jet ← This is my interest.

‣ Theory AN: PRD72(2005)054028

‣ Theory azimuthal moment: PRL99(2007)212002

‣ no measurement


• π in jet 

‣ Theory: PRD83(2001)034021

‣ STAR: JPS Conf. Proc. 37(2022)020118
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FIG. 10. Inclusive jet asymmetries, Asin(�S)
UT

, as a function of
particle jet-pT . The bars show the statistical uncertainties,
while the size of the boxes represents the systematic uncer-
tainties on Asin(�S)

UT
(vertical) and jet-pT (horizontal). The top

panel shows results for jets that scatter forward relative to the
polarized beam (xF > 0), while the bottom panel shows jets
that scatter backward to the polarized beam (xF < 0). These
results combine the 2012 and 2015 data.

boxes on the data points show the systematic uncer-
tainties. The heights of the uncertainty boxes represent
the quadrature sum of the systematic uncertainties in
AUT due to the contributions from underlying event di-
lutions, particle identifications, trigger bias, azimuthal
resolutions and non-uniform acceptance. The widths of
the uncertainty boxes represent the total systematic un-
certainty associated with the jet or hadron energy scale
as discussed in Sec. VC. In the plots which show asym-
metries for identified hadrons, the blue circles are for ⇡+,
K

+ or p, while the red squares are for ⇡�, K� or p̄. Un-
less stated otherwise, the results from the 2012 and 2015
data analyses are combined in the following.

The results with jet-pT dependence are divided into
two pseudorapidity ranges, one consisting of jets that
scatter forward (xF > 0) relative to the polarized beam,
and the other for jets that scatter backward (xF < 0) to
the polarized beam. Positive xF jets are more likely to
probe higher momentum fraction (x) partons and have
both a larger quark jet fraction and a larger quark polar-
ization transfer in the hard scattering. These considera-
tions reverse for jets that scatter backward with respect
to the polarized beam. The latter are more likely to sam-
ple lower x partons and have a larger gluon jet fraction
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FIG. 11. Hadron-tagged jet asymmetries, Asin(�S)
UT

, as a func-
tion of particle jet-pT for jets that contain a charged pion
with z > 0.3. The blue circles are for jets containing a high-
z ⇡+, while red squares are for jets containing a high-z ⇡�.
These results are from 2015 data. The asymmetries are shown
in comparison with KPRY model calculations from Ref. [70].
The theoretical calculations have the same colors as the data,
and are calculated for a mean z of 0.2.

and smaller quark polarization transfer. For the mea-
surements involving multi-dimensional binning, due to
the limited statistics, only the results for jets that scat-
ter forward with respect to the polarized beam are pre-
sented here. The analogous results for jets that scatter
backward with respect to the polarized beam are shown
in the Appendix.
An overall vertical scale uncertainty of 3.2% (3% for

the 2015 data and 3.5% for the 2012 data) from the beam
polarization uncertainty is not shown.

A. Inclusive jet asymmetries

Figure 10 shows the inclusive jet asymmetry (Asin(�S)
UT

)
with jet-pT dependence. At midrapidity, this value is
expected to be dominated by the gluon Sivers function
via the twist-3 correlators. The measured asymmetries
are consistent with zero within uncertainties, similar to
the previous STAR measurements in pp collisions at
200 GeV [80] and 500 GeV [73]. However, the uncer-
tainties for the present results are an order of magni-
tude smaller than those for the previous 200 GeV mea-
surement [80]. They are also a factor of four smaller

PRD106(2022)072010
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FIG. 3. The a) �h⇣i values and b) converted hkT i plotted as a
function of ⌘total. Rightmost points represent the average over
the ⌘total bins. Individual 0+ and 0� points are suppressed in
the lower panel to better view the hkT i signal and systematic
errors (dominated by fitting range contributions). Plotted
points are o↵set in ⌘total and outsize values omitted for clarity.

the parton fractions in each charge-tagged bin, which can
be estimated from simulation. Combining the gluon and
sea quark contributions, there are four constraints from
charge tagging vs. three unknown variables: hkuT i, hkdT i
and hkg+sea

T i. The charge tagging mainly di↵erentiates
the u and d quarks, o↵ering only limited separation for
quark vs. gluon. Since the quark and gluon PDFs have
opposite dependencies on x, and ⌘total is tightly corre-
lated with x, the quark vs. gluon constraints can be
enhanced by involving two adjacent ⌘total bins in the in-
version. Therefore, the system of equations is extended
to consist of eight constraints:

fu
i,jhkuT i+ fd

i,jhkdT i+ fg+sea
i,j hkg+sea

T i = hkT ii,j , (4)

where f represents the parton fraction from simulation,
the right-hand side hkT i is the tagged measurement in
data, i runs over all the charge tagging bins, and j runs
over the two adjacent ⌘total bins. The over-constrained
system is solved through Moore-Penrose inversion yield-
ing values for the individual parton hkT i, displayed in
Fig. 4 and discussed further below.

The systematic uncertainty of the parton hkT i has ma-
jor contributions from two sources: the fitting range of
⇣ and the more dominant error associated with the esti-
mation of parton fractions. Choosing a specific fit range
for ⇣ can cause a systematic shift in h⇣i. This uncer-
tainty is estimated by scanning over the fit range from
180±40� to 180±60�, extracting h⇣i for each trial, and
calculating the average absolute deviation from the nom-
inal fit range at 180±50�, separately in each ⌘total bin.
The scale of the fit range uncertainty is less than 15%
in the +tagging/�tagging as indicated in Fig. 3 b). The
default matrix inversion process is then used to convert
the uncertainty for the tagged asymmetries to that for

individual partons. Separately, parton fractions are es-
timated with leading-order PYTHIA simulations, which
come with their own set of systematic uncertainties. The
largest contributing factors to the uncertainty are PDF
and initial/final state radiation (ISR/FSR), as well as
the statistics of the simulation sample. Di↵erent PDF
sets directly cause discrepancies in the fraction of par-
tons. The amount of ISR/FSR particularly a↵ects event
selection in the low pT region, which leads to uncertain-
ties in the parton fractions. These uncertainties due to
PDF and ISR/FSR are estimated by varying respective
PYTHIA tunes, comparing to the default tune (370) and
quoting the average absolute di↵erence. The statistical
uncertainties of parton fractions are about the same level
as the PDF and ISR/FSR uncertainties, and are added
in quadrature to the total systematics. These total un-
cetainties vary with parton purity in the various charge
bins and as a function of �3.6 < ⌘total < 3.6, ranging
from 18 to 7-12% for u and d, and 3-21% for g+sea. Aside
from the fit range and parton fractions, there is a minor
dilution e↵ect in ⇣. The detector-level ⇣ has a broadened
resolution compared to the parton level, which is unac-
counted for by the detector-to-parton jet pT correction.
The dilution mostly a↵ects low-pT events. By comparing
detector and parton level �h⇣i for a wide range of simu-
lated hkT i in the embedding samples, this uncertainty is
estimated to be ⇠5.6%.
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FIG. 4. The hkT i for individual partons, inverted using par-
ton fractions from simulation and tagged hkT i, plotted as a
function of ⌘total, with rightmost points the ⌘total average.
Plotted points are o↵set in ⌘total for clarity, and systematic
uncertainties in ⌘total are set nonzero to improve visibility.

The inverted results and average over all the ⌘total bins
are shown in Fig. 4 and summarized here. The average
hkuT i is estimated to be +19.3 ± 7.6 (stat.) ± 2.6 (syst.)
MeV/c in which the positive sign means the u quarks
are correlated with the proton spin and proton momen-
tum following the right-hand rule: ~kuT · (~S ⇥ ~P ) > 0. To
the contrary, the average hkdT i is estimated to be -40.2 ±
23.0 ± 9.3 MeV/c, showing an opposite sign and a similar
magnitude compared to hkuT i. This is roughy consistent,
as should be expected of the elemental Sivers hkT i, with
the u-d correlation in SIDIS measurements, where the

Dijet TSSA by STAR 
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Inclusive Jet AN

process in the final state plays no role in the azimuthal
asymmetries, which can only be originated bymechanisms,
like the Sivers effect, acting in the initial state. Moreover,
we have verified that for the kinematical configurations
considered in this paper all contributions but the Sivers
effect play a negligible role already in the maximized
scenario. Therefore, in what follows, we limit our discus-
sion to the Sivers asymmetry. As already mentioned, in this
case quark and gluon contributions cannot be disentangled
since they add up, leading to a sin!SA asymmetry.

Let us first discuss the maximized scenario. In the central
rapidity region, the maximized gluon contribution is of the
order 20% at the lowest pjT values, decreasing fast to about
3% at large pjT for all c.m. energies considered. The maxi-

mized quark contribution is of the order 1–3% in the fullpjT

range, slowly decreasing with the increase of the c.m.
energy. The total potential effect is therefore sizable only
at small pjT values due to the gluon component. The situ-

ation is different in the forward rapidity region. Here both
quark and gluon maximized contributions can be very
sizable, showing as expected an opposite, respectively, in-
creasing and decreasing, behavior versus pjT . The total
maximized Sivers effect is therefore large in the full pjT

range with little dependence on the c.m. energy.
Concerning numerical estimates obtained adopting the

available parametrizations SIDIS 1 and SIDIS 2 for the
quark Sivers function, and the updated bound on the gluon
Sivers function, the situation is the following:

(1) In the central rapidity region, for both SIDIS 1,2 sets
and all energies considered the quark contribution is

practically negligible. Instead, the gluon contribu-
tion can be at most of the order 10–15% at the
lowest pjT values but decreases quickly with the

increasing of pjT . However, at least for
ffiffiffi
s

p ¼ 200
and 500 GeV, it can still be about 2–4% in the upper
pjT range. The measurement of a comparable Sivers

asymmetry in these kinematical configurations
could then be a clear indication for a gluonic con-
tribution to the Sivers effect.

(2) In the forward rapidity region the quark contribution
is small and negative at pjT ¼ 2 GeV for both sets
adopted, while at large pjT values it is negligible for

the SIDIS 2 set and positive and of the order 2–4%
for the SIDIS 1 set. The gluon contribution can be
sizable at very low pjT values but becomes negli-
gible quickly as pjT increases.

As an example, in Fig. 7 we show the estimated quark
and gluon Sivers contributions to the transverse single-spin
asymmetry for inclusive jet production in the central
(left panel) and forward (right panel) rapidity regions atffiffiffi
s

p ¼ 200 GeV, obtained adopting the SIDIS 1 and SIDIS
2 parametrizations for the quark Sivers function and the
updated bound for the gluon Sivers function (assumed to be
positive).

IV. CONCLUSIONS

In this paper we have presented a study of the azimuthal
asymmetries measurable in the distribution of leading un-
polarized or spinless hadrons (mainly pions) inside a
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FIG. 7 (color online). The estimated quark and gluon Sivers contributions to the transverse single-spin asymmetry for the
p"p ! jetþ X process, at

ffiffiffi
s

p ¼ 200 GeV c.m. energy in the central (left panel) and forward (right panel) rapidity regions as a
function of pjT , from pjT ¼ 2 GeV up to the maximum allowed value, obtained adopting the parametrization sets SIDIS 1 (quark

contribution: solid red line; gluon contribution: dashed green line) and SIDIS 2 (quark contribution: dotted blue line; gluon
contribution: dot-dashed cyan line). The dotted black vertical line in the right panel delimits the region beyond which the SIDIS
parametrizations for the quark transversity distribution are presently plagued by large uncertainties. Similar results with some
differences in the total size and in the relative weight of the quark and gluon contributions are obtained considering different c.m.
energies.
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Theoretical prediction for inclusive 
jet AN at RHIC kinematics in the 
mid-rapidity.

Inclusive jet AN 
measurement by STAR.

which has been presented and discussed at length in a
series of papers (see, e.g., Refs. [39,42,43]). We will then
present the expression of the polarized cross section for the
process of interest, discussing in detail the different par-
tonic contributions to the process; we will finally list the
azimuthal asymmetries that can be measured and their
physical content. In Sec. III we will present phenomeno-
logical results for the azimuthal asymmetries discussed in
the kinematical configuration of the RHIC experiments, at
different c.m. energies and for central- and forward-
rapidity jet production. In particular, we will first present
results for the totally maximized effects, by taking all
TMD functions saturated to natural positivity bounds and
adding in sign all possible partonic contributions. This will
assess the potential phenomenological relevance of each
effect. We will then consider more carefully those effects
involving the Sivers and Boer-Mulders distributions and
the Collins fragmentation function, for which phenomeno-
logical parametrizations obtained by fitting combined data
for azimuthal asymmetries in SIDIS, Drell-Yan, and eþe"

collisions are available. Section IV contains our final re-
marks and conclusions.

II. FORMALISM

In this section we present and summarize the expres-
sions of the polarized cross section and of the measurable
azimuthal asymmetries for the process A"B ! jetþ
!þ X, where A and B are typically a pp or p !p pair.
Since most of the formalism has been already presented
in Refs. [39,42,43], we will shortly recall the main ingre-
dients of the approach, discussing more extensively only
relevant details specific to the process considered.

Within a generalized TMD parton model approach in-
cluding spin and intrinsic parton motion effects, and as-
suming factorization, the invariant differential cross
section for the process AðSAÞB ! jetþ !þ X can be
written, at leading twist in the soft TMD functions, as
follows:

Ejd"
AðSAÞB!jetþ!þX

d3pjdzd
2k?!

¼
X

a;b;c;d;f#g

Z dxadxb
16!2xaxbs

d2k?a

&d2k?b$
a=A;SA
#a#

0
a
f̂a=A;SAðxa;k?aÞ$b=B

#b#
0
b
f̂b=Bðxb;k?bÞ

&M̂#c;#d;#a;#b
M̂'

#0
c;#d;#

0
a;#

0
b
%ðŝþ t̂þ ûÞD̂!

#c;#
0
c
ðz;k?!Þ: (1)

In an LO pQCD approach the scattered parton c in the
hard elementary process ab ! cd is identified with
the observed fragmentation jet. Let us summarize briefly
the physical meaning of the terms in Eq. (1). Full details
and technical aspects can be found in Refs. [39,42,43].

We sum over all allowed partonic processes contributing
to the physical process observed. f#g stays for a sum over
all partonic helicities, # ¼ (1=2ð(1Þ for quark (gluon)
partons, respectively. xa;b and k?a;b are, respectively, the
initial parton light-cone momentum fractions and intrinsic

transverse momenta. Analogously, z and k?! are the light-
cone momentum fraction and the transverse momentum of
the observed pion inside the jet with respect to (w.r.t.) the
jet (parton c) direction of motion.

$a=A;SA
#a#

0
a
f̂a=A;SAðxa; k?aÞ contains all information on the

polarization state of the initial parton a, which depends in
turn on the (experimentally fixed) parent hadron A polar-
ization state and on the soft, nonperturbative dynamics
encoded in the eight leading-twist polarized and transverse
momentum–dependent parton distribution functions,

which will be discussed in the following. $a=A;SA
#a#

0
a

is the

helicity density matrix of parton a. Analogously, the po-
larization state of parton b inside the unpolarized hadron B

is encoded into $b=B
#b#

0
b
f̂b=Bðxb;k?bÞ.

The M̂#c;#d;#a;#b
’s are the pQCD leading-order helicity

scattering amplitudes for the hard partonic process ab ! cd.
The D̂!

#c;#
0
c
ðz;k?!Þ’s are the soft leading-twist TMD

fragmentation functions describing the fragmentation pro-
cess of the scattered (polarized) parton c into the final
leading pion inside the jet.
As already said, we will consider as initial particles A, B,

two spin-1=2 hadrons (typically, two protons) with hadron
B unpolarized and hadron A in a pure transverse spin state
denoted by SA, with polarization (pseudo)vector PA.
Ej and pj are, respectively, the energy and three-

momentum of the observed jet.
Unless otherwise stated, we will always work in the AB

hadronic c.m. frame, with hadron A moving along the
þẐcm direction; we will define ðXZÞcm as the production
plane containing the colliding beams and the observed jet,
with ðpjÞXcm

> 0. We therefore have, neglecting all masses
(see also Fig. 1):

FIG. 1 (color online). Kinematical configuration for the pro-
cess AðSAÞB ! jetþ !þ X in the hadronic c.m. reference
frame.
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view, this would be a crucial test for the TMD approach,
independently of the open issues concerning factorization
and universality of the TMD distribution functions men-
tioned in the introduction.

Expressions similar to those shown above for the
qq ! qq and gg ! gg channels hold also for all partonic
contributions involved, with the appropriate combinations
of quark and gluon distribution and fragmentation func-
tions. In general, fewer terms are present both in the
denominator and the numerator of the asymmetry.
Moreover, as a general rule distribution and fragmentation
functions related to transversely (linearly) polarized quarks
(gluons) appear only in couples. This limits the number of
allowed terms.

According to these results, the single-transverse polar-
ized cross section for the process AðSAÞB ! jetþ !þ X
will have the following general structure:

2d"ð#SA ;#
H
! Þ $ d"0 þ d!"0 sin#SA þ d"1 cos#

H
!

þ d!"%
1 sinð#SA %#H

! Þ þ d!"þ
1 sinð#SA þ#H

! Þ
þ d"2 cos2#

H
! þ d!"%

2 sinð#SA % 2#H
! Þ

þ d!"þ
2 sinð#SA þ 2#H

! Þ: (28)

Equivalently, the numerator and denominator of the
asymmetry will have the following expression:

d"ð#SA ;#
H
! Þ % d"ð#SA þ !;#H

! Þ $ d!"0 sin#SA

þ d!"%
1 sinð#SA %#H

! Þ þ d!"þ
1 sinð#SA þ#H

! Þ
þ d!"%

2 sinð#SA % 2#H
! Þ þ d!"þ

2 sinð#SA þ 2#H
! Þ;
(29)

d"ð#SA ;#
H
! Þ þ d"ð#SA þ !;#H

! Þ
& 2d"unpð#H

! Þ $ d"0 þ d"1 cos#
H
! þ d"2 cos2#

H
! :

(30)

In terms of the polarized cross section, Eq. (28), we can
define average values of appropriate circular functions of
#SA and #H

! , in order to single out the different contribu-
tions of interest:

hWð#SA ;#
H
! Þiðpj; z; k?!Þ

¼
R
d#SAd#

H
!Wð#SA ;#

H
! Þd"ð#SA ;#

H
! ÞR

d#SAd#
H
!d"ð#SA ;#

H
! Þ

: (31)

Alternatively, for the single-spin asymmetry we can, in
close analogy with the case of semi-inclusive deeply in-
elastic scattering, define appropriate azimuthal moments,

A
Wð#SA

;#H
! Þ

N ðpj; z; k?!Þ & 2hWð#SA ;#
H
! Þiðpj; z; k?!Þ ¼ 2

R
d#SAd#

H
!Wð#SA ;#

H
! Þ½d"ð#SA ;#

H
! Þ % d"ð#SA þ !;#H

! Þ)R
d#SAd#

H
! ½d"ð#SA ;#

H
! Þ þ d"ð#SA þ !;#H

! Þ)
;

(32)

where Wð#SA ;#
H
! Þ is again some appropriate circular

function of #SA and #H
! . In practice, it will be any of the

circular functions appearing, e.g., in Eqs. (23) and (27) for
specific partonic channels, and for polarized cross sections
in general in Eq. (29) so that the coefficient related to the
corresponding azimuthal moment is singled out.

III. PHENOMENOLOGY

In this section wewill present and discuss some phenome-
nological implications of our approach for the unpolarized
and single-transverse polarized cases in kinematical configu-
rations accessible at RHIC by the STAR and PHENIX ex-
periments. We will consider both central ($j ¼ 0) and
forward ($j ¼ 3:3) (pseudo)rapidity configurations and dif-
ferent c.m. energies,

ffiffiffi
s

p ¼ 62:4, 200, 500 GeV, aiming at a
check of the potentiality of the approach in disentangling
among different quark- and gluon-originating effects. We
will also consider two very different situations concerning
the TMD distribution and fragmentation functions involved.

Wewill first consider, for!þ production only, a scenario
in which the effects of all TMD functions are overmaxi-
mized. By this we mean that all TMD functions are

maximized in size by imposing natural positivity bounds
(and the Soffer bound for transversity [47,48]); moreover,
the relative signs of all active partonic contributions are
chosen so that they sum up additively. This very extreme
scenario of course might imply the violation of other, more
stringent, bounds and sum rules; examples are the Burkardt
sum rule for the Sivers distribution [49], and the Schäfer-
Teryaev sum rule for the Collins function [50]. On the
other hand, it has the advantage of setting an upper bound
on the absolute value of any of the effects playing a
potential role in the azimuthal asymmetries. Therefore,
all effects that are negligible or even marginal in this
scenario may be directly discarded in subsequent refined
phenomenological analyses.
As a second step in our study we will consider, for both

neutral and charged pions, only the surviving effects, in-
volving TMD functions for which parametrizations are
available from independent fits to other spin and azimuthal
asymmetries data in SIDIS, DY, and eþe% processes. Even
if in our approach factorization and universality are not
guaranteed for the process under consideration,
we still believe that at the present stage this analysis can
be of phenomenological relevance. It can certainly help in
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AN = σ↑ − σ↓

σ↑ + σ↓
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FIG. 10. Inclusive jet asymmetries, Asin(�S)
UT

, as a function of
particle jet-pT . The bars show the statistical uncertainties,
while the size of the boxes represents the systematic uncer-
tainties on Asin(�S)

UT
(vertical) and jet-pT (horizontal). The top

panel shows results for jets that scatter forward relative to the
polarized beam (xF > 0), while the bottom panel shows jets
that scatter backward to the polarized beam (xF < 0). These
results combine the 2012 and 2015 data.

boxes on the data points show the systematic uncer-
tainties. The heights of the uncertainty boxes represent
the quadrature sum of the systematic uncertainties in
AUT due to the contributions from underlying event di-
lutions, particle identifications, trigger bias, azimuthal
resolutions and non-uniform acceptance. The widths of
the uncertainty boxes represent the total systematic un-
certainty associated with the jet or hadron energy scale
as discussed in Sec. VC. In the plots which show asym-
metries for identified hadrons, the blue circles are for ⇡+,
K

+ or p, while the red squares are for ⇡�, K� or p̄. Un-
less stated otherwise, the results from the 2012 and 2015
data analyses are combined in the following.

The results with jet-pT dependence are divided into
two pseudorapidity ranges, one consisting of jets that
scatter forward (xF > 0) relative to the polarized beam,
and the other for jets that scatter backward (xF < 0) to
the polarized beam. Positive xF jets are more likely to
probe higher momentum fraction (x) partons and have
both a larger quark jet fraction and a larger quark polar-
ization transfer in the hard scattering. These considera-
tions reverse for jets that scatter backward with respect
to the polarized beam. The latter are more likely to sam-
ple lower x partons and have a larger gluon jet fraction
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FIG. 11. Hadron-tagged jet asymmetries, Asin(�S)
UT

, as a func-
tion of particle jet-pT for jets that contain a charged pion
with z > 0.3. The blue circles are for jets containing a high-
z ⇡+, while red squares are for jets containing a high-z ⇡�.
These results are from 2015 data. The asymmetries are shown
in comparison with KPRY model calculations from Ref. [70].
The theoretical calculations have the same colors as the data,
and are calculated for a mean z of 0.2.

and smaller quark polarization transfer. For the mea-
surements involving multi-dimensional binning, due to
the limited statistics, only the results for jets that scat-
ter forward with respect to the polarized beam are pre-
sented here. The analogous results for jets that scatter
backward with respect to the polarized beam are shown
in the Appendix.
An overall vertical scale uncertainty of 3.2% (3% for

the 2015 data and 3.5% for the 2012 data) from the beam
polarization uncertainty is not shown.

A. Inclusive jet asymmetries

Figure 10 shows the inclusive jet asymmetry (Asin(�S)
UT

)
with jet-pT dependence. At midrapidity, this value is
expected to be dominated by the gluon Sivers function
via the twist-3 correlators. The measured asymmetries
are consistent with zero within uncertainties, similar to
the previous STAR measurements in pp collisions at
200 GeV [80] and 500 GeV [73]. However, the uncer-
tainties for the present results are an order of magni-
tude smaller than those for the previous 200 GeV mea-
surement [80]. They are also a factor of four smaller

PRD106(2022)072010

2012: 22 pb-1

2015: 55 pb-1

Inclusive jet AN (sometimes written as ) is sensitive to 
the initial-state twist-3 quark-gluon correlators, which are 
described by the Efremov-Teryaev-Qiu-Sterman function. 
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Photon-Jet asymmetries
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AN ← unpol
← pol

Finally, we introduce the vector r? ! K!? " Kj?, and the
angle "# ! #j ##! # $. We focus our attention on the
case in which jr?j$ jK!? # Kj?j, i.e., when the photon
and the jet are approximately back-to-back in the trans-
verse plane. We retain only leading-order contributions in
an expansion in jr?j=jK!?j. In particular, this implies that
x!? ! xj? % x?. For comparison’s sake, we will consis-
tently make the same approximation in the generalized
parton model [6].

We now consider the following azimuthal moment [4]
 

M!j
N &%!;%j;x?'!

R
d#jd#!

2jK!?j
M sin&"#'cos&#!' d&

d#jd#!R
d#jd#!

d&
d#jd#!

%#A"B
C

: (3)

We expect the above integral to be dominated by the
small-"# region. Note that a positive value for this mo-
ment means that the sum of the photon and jet transverse
momenta, r?, has a preference to lie on the right side of the
transverse plane (as defined in Fig. 1), i.e., the photon-jet
pair has a preference to go to the right.

In terms of PDFs and partonic hard cross sections, the
denominator of the above moment can be interpreted as

 C ! x?x1x2

X
q
ffg1 &x1'fq1&x2'd&̂gq!!q " fq1&x1'

( )f !q
1 &x2'd&̂q !q!!g " fg1 &x2'd&̂qg!!q*g; (4)

where f1 are the unpolarized PDFs and the sum runs over
quarks and antiquarks. The standard partonic cross sections
appearing in Eq. (4) can be obtained from the cut diagrams
of Figs. 2 and 3 and read
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where the last term has been included for later use. The
momentum fractions x1 and x2 and the partonic
Mandelstam variables can be expressed as

 x1 !
x?
2
&e%! " e%j'; x2 !

x?
2
&e#%! " e#%j'; (9)

 ŝ!x1x2s; #
t̂
ŝ
%y! 1

e%!#%j"1
; # û

ŝ
!1#y: (10)

The contributions A and B in Eq. (3) are given by

 A ! x?x1x2

X
q
)f?&1'gd1T &x1'fq1 &x2'd&̂&d')g*q!!q

" f?&1'gf1T &x1'fq1 &x2'd&̂&f')g*q!!q " f
?&1'q
1T &x1'

( &f !q
1 &x2'd&̂)q* !q!!g " fg1 &x2'd&̂)q*g!!q'*; (11)

 B ! x?x1x2

X
q
hq1&x1'h?&1' !q1 &x2'd"&̂q") !q*"!!g; (12)

where the transversity function (h1), and the first transverse
moments of the Sivers function (f?&1'1T ) and of the Boer-
Mulders function (h?&1'1 ) [19] appear. Note that there are
two different gluon Sivers functions, corresponding to two
distinct ways to construct color-singlet three-gluon matrix
elements, using the symmetric dabc and antisymmetric
fabc structure constants of SU&3', respectively [20]. The
modified partonic cross sections in the above equations are

FIG. 2. Cut diagrams for qg! !q scattering.

FIG. 1 (color online). Azimuthal angles involved in the pro-
cess. The vectors K!?, Kj? lie on the plane perpendicular to P1.

FIG. 3. Cut diagrams for q !q! !g scattering.
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this kinematical regime. In contrast, the generalized parton
model (dashed line in Fig. 5) predicts the opposite sign.

In conclusion, we have examined the azimuthal moment
M!j
N , defined in Eq. (3), for the process p"p! ! jet X. We

have shown that in the kinematical regime of large and
positive photon pseudorapidities and negative jet pseudor-
apidities, the moment is dominated by the quark Sivers
function combined with the gluon unpolarized distribution
function. The involved partonic subprocess is qg! !q.
The two functions have to be convoluted with a gluonic-
pole cross section instead of a standard partonic cross
section, to take into account the presence of past-pointing
and future-pointing Wilson lines arising from gluon inter-
actions with the incoming gluon and the outgoing quark,
respectively. The color structure of QCD implies that the
gluonic-pole cross section for qg! !q is equal to !5=4
times the standard partonic cross section. This leads to the
robust prediction of a negative sign for the azimuthal mo-
ment M!j

N in the considered kinematical regime, opposite
to the expectation of the generalized parton model, ob-
tained using standard partonic cross sections. The experi-
mental measurement of M!j

N , possible at RHIC, will
therefore be of crucial importance to deepen our present
understanding of single-spin asymmetries.
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FIG. 5 (color online). Prediction for the azimuthal moment
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!!!
s
p " 200 GeV, as a function of "!, integrated over

!1 # "j # 0 and 0:02 # x? # 0:05. Solid line: using gluonic-
pole cross sections. Dashed line: using standard partonic cross
sections. Dotted line: maximum contribution from the gluon
Sivers function (absolute value). Dot-dashed line: maximum
contribution from the Boer-Mulders function (absolute value).
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Finally, we introduce the vector r? ! K!? " Kj?, and the
angle "# ! #j ##! # $. We focus our attention on the
case in which jr?j$ jK!? # Kj?j, i.e., when the photon
and the jet are approximately back-to-back in the trans-
verse plane. We retain only leading-order contributions in
an expansion in jr?j=jK!?j. In particular, this implies that
x!? ! xj? % x?. For comparison’s sake, we will consis-
tently make the same approximation in the generalized
parton model [6].

We now consider the following azimuthal moment [4]
 

M!j
N &%!;%j;x?'!

R
d#jd#!

2jK!?j
M sin&"#'cos&#!' d&
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%#A"B
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: (3)

We expect the above integral to be dominated by the
small-"# region. Note that a positive value for this mo-
ment means that the sum of the photon and jet transverse
momenta, r?, has a preference to lie on the right side of the
transverse plane (as defined in Fig. 1), i.e., the photon-jet
pair has a preference to go to the right.

In terms of PDFs and partonic hard cross sections, the
denominator of the above moment can be interpreted as

 C ! x?x1x2

X
q
ffg1 &x1'fq1&x2'd&̂gq!!q " fq1&x1'

( )f !q
1 &x2'd&̂q !q!!g " fg1 &x2'd&̂qg!!q*g; (4)

where f1 are the unpolarized PDFs and the sum runs over
quarks and antiquarks. The standard partonic cross sections
appearing in Eq. (4) can be obtained from the cut diagrams
of Figs. 2 and 3 and read

 d&̂q !q!!g !
$''Se2

q

ŝ2
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where the last term has been included for later use. The
momentum fractions x1 and x2 and the partonic
Mandelstam variables can be expressed as

 x1 !
x?
2
&e%! " e%j'; x2 !

x?
2
&e#%! " e#%j'; (9)

 ŝ!x1x2s; #
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ŝ
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The contributions A and B in Eq. (3) are given by

 A ! x?x1x2

X
q
)f?&1'gd1T &x1'fq1 &x2'd&̂&d')g*q!!q

" f?&1'gf1T &x1'fq1 &x2'd&̂&f')g*q!!q " f
?&1'q
1T &x1'

( &f !q
1 &x2'd&̂)q* !q!!g " fg1 &x2'd&̂)q*g!!q'*; (11)

 B ! x?x1x2

X
q
hq1&x1'h?&1' !q1 &x2'd"&̂q") !q*"!!g; (12)

where the transversity function (h1), and the first transverse
moments of the Sivers function (f?&1'1T ) and of the Boer-
Mulders function (h?&1'1 ) [19] appear. Note that there are
two different gluon Sivers functions, corresponding to two
distinct ways to construct color-singlet three-gluon matrix
elements, using the symmetric dabc and antisymmetric
fabc structure constants of SU&3', respectively [20]. The
modified partonic cross sections in the above equations are

FIG. 2. Cut diagrams for qg! !q scattering.

FIG. 1 (color online). Azimuthal angles involved in the pro-
cess. The vectors K!?, Kj? lie on the plane perpendicular to P1.

FIG. 3. Cut diagrams for q !q! !g scattering.
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Inclusive jet AN analysis
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1. Learning calorimeter data and jet with MC data

2. Real data analysis

3. Comparison with MC data



Exercise with MC data

6

As sPHENIX documentation is terrible, just collecting information is quite important. 

Catching up what has been done in the Jet topical group is also a good starting point.



(ηreco.i , ϕreco,i)

z

Jet validation and Jet_reso.C in analysis repository

https://github.com/sPHENIX-Collaboration/analysis/tree/master/JS-Jet/JetValidation

JetValidation module in Fun4All_JetVal.C

• writes information to event-base TTree

• Reconstructed jets: 


-  required

- ID, component info, η, φ, E, pT are saved


• Truth jets: 

-  and  are required

- ID, component info, η, φ, E, pT are saved

pT > 1 GeV

−1.1 ≤ η ≤ 1.1 5 ≤ pT ≤ 100 GeV

Input:

• DST_TRUTH_JET_…

• DST_CALO_CLUSTER_…

• DST_GLOBAL_…

Jet_reso.C

• loops over truth jets in an event, 


- a reconstructed jet with the smallest   
is assigned as a matched one.

‣  , and 

‣ If dR > 0.3, no matching is done

dR ≡ Δη2 + Δϕ2

Δηi ≡ ηtruth − ηi,reco Δϕi ≡ ϕtruth − ϕi,reco

truth jet,






5 < pT < 100 GeV
−1.1 ≤ η ≤ 1.1

reco jet i, 
pT > 1 GeV

(ηtruth, ϕtruth)

ΔRi

ΔRi

ΔRi

Min( ΔRi ) < 0.3

Truth jet — Reconstructed jet matching

The same analysis was done by myself as an exercise.

100k events

https://github.com/sPHENIX-Collaboration/analysis/tree/master/JS-Jet/JetValidation
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Jet validation and Jet_reso.C in analysis repository

https://github.com/sPHENIX-Collaboration/analysis/tree/master/JS-Jet/JetValidation

JetValidation module in Fun4All_JetVal.C

• writes information to event-base TTree

• Reconstructed jets: 


-  required

- ID, component info, η, φ, E, pT are saved


• Truth jets: 

-  and  are required

- ID, component info, η, φ, E, pT are saved

pT > 1 GeV

−1.1 ≤ η ≤ 1.1 5 ≤ pT ≤ 100 GeV

Input:

• DST_TRUTH_JET_…

• DST_CALO_CLUSTER_…

• DST_GLOBAL_…

Jet_reso.C

• loops over truth jets in an event, 


- a reconstructed jet with the smallest   
is assigned as a matched one.

‣  , and 

‣ If dR > 0.3, no matching is done
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Jet validation and Jet_reso.C in analysis repository

https://github.com/sPHENIX-Collaboration/analysis/tree/master/JS-Jet/JetValidation

JetValidation module in Fun4All_JetVal.C

• writes information to event-base TTree

• Reconstructed jets: 


-  required

- ID, component info, η, φ, E, pT are saved


• Truth jets: 

-  and  are required

- ID, component info, η, φ, E, pT are saved

pT > 1 GeV

−1.1 ≤ η ≤ 1.1 5 ≤ pT ≤ 100 GeV

Input:

• DST_TRUTH_JET_…

• DST_CALO_CLUSTER_…

• DST_GLOBAL_…

Jet_reso.C

• loops over truth jets in an event, 


- a reconstructed jet with the smallest   
is assigned as a matched one.

‣  , and 

‣ If dR > 0.3, no matching is done

dR ≡ Δη2 + Δϕ2

Δηi ≡ ηtruth − ηi,reco Δϕi ≡ ϕtruth − ϕi,reco

truth jet,






5 < pT < 100 GeV
−1.1 ≤ η ≤ 1.1

(ηtruth, ϕtruth)

no requirement
↓

← with truth jet matching

η ϕEpT

Generation threshold at 10 GeV/c
The minimum pT 5 GeV/c

η boundaries

-1.1 — +1.1

reco jet i, 
pT > 1 GeV ΔRi

#Truth jet with cuts

100k events

https://github.com/sPHENIX-Collaboration/analysis/tree/master/JS-Jet/JetValidation
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+ pT, truth > 10 GeV

Δη ΔϕΔEΔpT

truth
re

co

• In addition to the cuts in 
JetValidation, pT, truth > 10 GeV was 
required to make the situation 
simpler.


• pT, E, η, and φ are compared.

- Jets were well reconstructed.

- Good agreement and linear correlation could 

be seen in η and φ. 
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σφ = 0.05 rad

    ≒ 2 EMcal towers

σφ = 0.06

    ≒ 2 EMcal towers

fitted with

Gaus(I, μ, σ) 

+ Gaus(I’, μ, σ’)

fitted with

Gaus(I, μ, σ) 

+ Gaus(I’, μ, σ’)



What was done in the last 2 weeks…
• The difference of truth/reconstructed jet energy shown in the last meeting was not small. 

I should understand it.

Understanding Jet Performance
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Virginia Bailey,

sPHENIX Analysis Software Tutorial, Oct. 2023.
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https://indico.bnl.gov/event/20677/
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• Data: MDC2 run21 type 12, no pileup

- i.e. p+p with 0 mrad crossing angle for jets with pT 

with 10 GeV/c

- 100k 10k events ← If I had time…


• The same cuts as last meeting’s were applied:

- pT, reco > 1 GeV

- |ηtruth| < 1.1

- 10 ≦ pT, truth ≦ 100 GeV/c

Comparisons b/w HIJetReco and JetReco macros

HIJetReco

to be updated

Understanding Jet Performance
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Virginia Bailey,

sPHENIX Analysis Software Tutorial, Oct. 2023.
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The worse agreement is probably due to the pT selection.

https://indico.bnl.gov/event/20677/


Jet/TowerInfo/G4Hit 
towards the discrepancy of truth/reconstructed energy of jet
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• Data: MDC2 run21 type 12, no pileup

- i.e. p+p with 0 mrad crossing angle for jets with pT 

with 10 GeV/c

- 100k 10k events ← If I had time…


• The same cuts as last meeting’s were applied:

- pT, reco > 1 GeV

- |ηtruth| < 1.1

- 10 ≦ pT, truth ≦ 100 GeV/c
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It’s maybe too much detailed for inclusive jet An analysis, but we use such information eventually…
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Fraction of EMcal energy to total reconstructed jet energy if truth 
leading particle is selected
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Real data analysis
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• Official DST productions

- I made list of nodes in the official DSTs in the sPHENIX wiki

- Root dir: /sphenix/lustre01/sphnxpro/physics/slurp

- Which one should I use? 


‣ calobeam

‣ calophysics

‣ caloy2fitting ← maybe this one as TowerInfo is available


• Another DST productions

- Root dir: /sphenix/lustre01/sphnxpro/production

- sub directory: run2pp/physics/


‣ ana462_2024p010_v001

‣ ana468_2024p012_v001

Great starting point!

https://wiki.sphenix.bnl.gov/index.php?title=Nodes_in_official_DSTs


Runs
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• A good(-looking) RHIC fill was randomly picked.

• Runs:


- 50031

- 50032

- 50033

- 50034

- 50036

- 50045

- 50046

- 50047

- Condition: stable data taking. INTT was in the streaming mode only run 50032. 50045 was very 

successful long run, which was for 1 hour.



• All jets in events, taken everything even if they look junk, were checked. 

Quick look
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Run: 50036 
Cut:

• nothing or #jet  0≠
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• All jets in events, taken everything even if they look junk, were checked. 

Quick look
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Run: 50036 
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• All jets in events, taken everything even if they look junk, were checked. 

Quick look
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Run: 50036 
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• All jets in events, taken everything even if they look junk, were checked. 

Quick look
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• All jets in events, taken everything even if they look junk, were checked. 

• Kinematics of all jets

Quick look
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• All jets in events, taken everything even if they look junk, were checked. 

• Kinematics of all jets

Quick look
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• All jets in events, taken everything even if they look junk, were checked. 

• Kinematics of all jets
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• All jets in events, taken everything even if they look junk, were checked. 

• Kinematics of all jets
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• All jets in events, taken everything even if they look junk, were checked. 

• Kinematics of all jets
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Quick look

24

η distribution became similar to 
the sPHENIX acceptance.

Run: 50036 
Cut:

• pT > 10 GeV/c
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• >50 jets/event is too many. It’s good to see the kinematics of leading/
subleading jets (jet with the (2nd) highest energy).

Quick look: Leading/Subleading jets
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Run: 50036 
Cut:

• Leading or subleading jet
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• Jets are useful tool for the study of proton structure.

• I’m currently working on inclusive jet AN analysis. My goal is γ-Jet asymmetry.

• The analysis was started from looking into MC data. Some analysis has been done.

• I moved to the real data analysis. Currently, the skimmed DSTs prepared by the Jet topical group, 

which contain calorimeter data, reconstructed jets with pT cut of >10 GeV/c, MBD vertex, and 
trigger information, are used.


• Some quick looks are shown.

Summary
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φReconstructed - Truth 

σφ = 0.05 rad

    ≒ 2 EMcal towers

fitted with

Gaus(I, μ, σ) 

+ Gaus(I’, μ, σ’)
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