EMC position modify

Jingyu

Modify geo from Virgile

Refined geometry -> read tower center directly from GEANT4 objects

Former geometry: Approximate center: projection at R = 93.5 cm New geometry: actual tower center and individual rotation

CaloGeomMappingv2: create RawTowerGeomv5

<< towerg->get_center_high_eta_z() << ")\n";

code and compile

- /sphenix/user/jzhang1/Virgikguide/CaloBase/RawTowerGeomv5.h
- /sphenix/user/jzhang1/Virgikguide/CaloBase/RawTowerGeomv5.cc
- /sphenix/user/jzhang1/Virgikguide/CaloReco/CaloGeomMappingv2.h
- /sphenix/user/jzhang1/Virgikguide/CaloReco/CaloGeomMappingv2.cc
- /sphenix/user/jzhang1/Virgikguide/calo_geom_mapping_exact.root
- /sphenix/user/jzhang1/Virgikguide/CaloReco/RawClusterBuilderTemplate.cc

Compilation order:

CaloBase -> CaloReco -> Your analysis module (eg. physiTuto/tutorial)

How to use the modify geo

- Fun4All_physiTuto.C :
- // Load the modified geometry
- CaloGeomMappingv2 *cgm = new CaloGeomMappingv2();
- cgm->set_detector_name("CEMC");
- cgm->setTowerGeomNodeName("TOWERGEOM_CEMCv3");
- se->registerSubsystem(cgm);
- tutorial:
- geomEM = findNode::getClass <RawTowerGeomContainer> (topNode, "TOWERGEOM_CEMCv3");

before modify:

after modify:

EMC pos reco 0226

Jingyu

Tower geom

Reference code: RawTowerGeomv5 , CaloGeomMappingv2

New geom:

8 vertex to describe tower geometry we get innerface center (center of 1234) & geomery center (center of 12345678)

EMC cluster geom

Reference code: RawClusterBuilderTemplate , G4_CEmc_Spacal

void setUseRawTowerGeomv5(bool flag = true) { m_use_RawTowerGeomv5 = flag; }
void setProjectToInnerSurface(bool flag = true) { m_project_tower_innersurface = flag; }

I modified the tower geometry used in cluster reconstruction, and you can set the cluster geometry through these two interfaces.

void CEMC Clusters() int verbosity = std::max(Enable::VERBOSITY, Enable::CEMC_VERBOSITY); Fun4AllServer *se = Fun4AllServer::instance(); if (G4CEMC::Cemc clusterizer == G4CEMC::kCemcTemplateClusterizer) RawClusterBuilderTemplate *ClusterBuilder1 = new RawClusterBuilderTemplate("EmcRawClusterBuilderTemplate1"); ClusterBuilder1->Detector("CEMC"); ClusterBuilder1->setUseRawTowerGeomv5(true); ClusterBuilder1->setProjectToInnerSurface(false); ClusterBuilder1->Verbosity(verbosity); ClusterBuilder1->set_threshold_energy(0.030); // This threshold should be the same as in CEMCprof_Thresh**.root file below std::string emc_prof = getenv("CALIBRATIONROOT"); emc_prof += "/EmcProfile/CEMCprof_Thresh30MeV.root"; ClusterBuilder1->LoadProfile(emc prof); if (!Enable::CEMC_G4Hit) ClusterBuilder1->set_UseTowerInfo(1); // just use towerinfo se->registerSubsystem(ClusterBuilder1); RawClusterBuilderTemplate *ClusterBuilder2 = new RawClusterBuilderTemplate("EmcRawClusterBuilderTemplate2"); ClusterBuilder2->Detector("CEMC"); ClusterBuilder2->setUseRawTowerGeomv5(true); ClusterBuilder2->setProjectToInnerSurface(true); ClusterBuilder2->Verbosity(verbosity); ClusterBuilder2->set_threshold_energy(0.030); // This threshold should be the same as in CEMCprof_Thresh**.root file below ClusterBuilder2->LoadProfile(emc prof); if (!Enable::CEMC G4Hit) ClusterBuilder2->set UseTowerInfo(1); // just use towerinfo se->registerSubsystem(ClusterBuilder2); else if (G4CEMC::Cemc_clusterizer == G4CEMC::kCemcGraphClusterizer) RawClusterBuilderGraph *ClusterBuilder = new RawClusterBuilderGraph("EmcRawClusterBuilderGraph"); ClusterBuilder->Detector("CEMC"); ClusterBuilder->Verbosity(verbosity); se->registerSubsystem(ClusterBuilder);

Modify the CEMC_Clusters() function defined in G4_CEmc_Spacal.C; currently, both the geometry center and the innerface center are being obtained.

position information

what we can get position information are Truth level: Primary electron hit on CEMC innerface Shower g4hit on CEMC

Reco level:

Tower(be hitted) innerface center Tower(be hitted) geometry center

EMC cluster reco by tower innerface center with energy weight EMC cluster reco by tower geometry center

with energy weight

Plan

- Compare truth and reco information
- Get position resolution verse energy

Compare the positon 0312

Jingyu

4 position

Primary particle first hit on CEMC Shower center with energy weight

cluster positon reco with geom center cluster positon reco with innerface center

Compare the pos

double distance_R = sqrt(delta_x*delta_x+delta_y*delta_y);

The final strange rise comes from the insufficient amount of data.

- Using the inner face center to reconstruct the cluster position gives the best results now
- Using the inner face center to reconstruct the cluster position gives the best results now

where the large R from?

X-Y plane display

1% ~3% electron

Donnot it interact immediately arrive the CEMC?

Plan

- better calo pos?
- Pico dst?
- other anything?
- which one is more important now?

make reco close to truth

Jingyu

electron and positron

positron and electron have similar behavior

dphiR and dR

In the tangential direction, the truth-reco distribution shows a deflection of -0.0083 rad, then dphi*R have a ~0.8cm shift

modify dphiR(rotation) and dRadius(shift)

more close to the truth position

24

Problem and plan

where is the little shift from? are the deviations in these two directions not independent? But from the 2D plot, I still can't see why the peak isn't at 0 cm.

how to get smaller width? for single particle reco-truth: pt/energy dependent? have correlation with others varible? particle-by-particle modify the reco position

z-dependence 0417

Jingyu

4 position

Primary particle first hit on CEMC Shower center with energy weight

cluster positon reco with geom center cluster positon reco with innerface center

Compare the pos

double distance R = sqrt(delta x*delta x+delta y*delta y);

- Previously, I observed that the cluster position reconstructed using the tower inner face center was close to the position of the particle's G4Hit in the CEMC (which I treated as the hit point).
- I think the first hit point on CEMC can be better used for reconstruction than the shower center, because it represents the actual particle passage location.
- I do some modify to let reco with inner face center to close to the truth(hit) position

dphiR and dR

In the tangential direction, the truth-reco distribution shows a deflection of -0.0083 rad, then dphi*R have a ~0.8cm shift

modify dphiR(rotation) and dRadius(shift)

positon modify effect on pt resolution and E/p

Distance between reco and truth with diff-modify

Plan

- Continue study how to make the reconstruction closer to the truth position, especially in the tangential direction (smaller dphi angle).
- Study the distance between the shower center and the cluster reconstructed with the geometry center.
- Use calo energy to improve the Performance

Now. Use hit positon (x, y, z) Get pt from curve in the xy-plane

Calculate energy from pt and eta(theta) angle

Plan. Energy from calo

If including the EMCal(+HCal) Energy in the calculation maybe improve the resolution.

For example: In the current fitting, we have **pt = f(dphi)**,

instead use pt = f(dphi) * g(E_emc),

where g could be something like gaus(E * cos(eta)), it might enhance the resolution.