
1

Please take a quick look at the slides as follow I prepared to get a basic

understanding of the EMCal-related code and G4Hit in sPHENIX.

2

3

G4Hit:

4

Goal:
Obtain the position measurement information of electrons and positrons (charged
hadrons) by the EMCal.
When a charged particle strikes the EMCal, it initiates an electromagnetic shower,
depositing energy within the calorimeter. The EMCal readout units are towers, and
we can reconstruct the EMCal’s measurement of charged particles by utilizing the
information from the towers.
Moreover, in simulations, we have access to all the underlying truth information.
We treat the truth-level information obtained from Geant4 as the "true" reference
and compare the reconstructed results to this truth to evaluate performance and
apply corrections to make the reconstruction closer to the truth.

Regarding position reconstruction for charged particles, I am using four types of
position information:

Truth level: The reference code is in the CodeExplain.C file.

1. Primary particle first hit on CEMC:
This represents the position where the primary charged particle first hits the EMCal.
We first identify all primary particles and collect the G4Hits produced by these
primaries (excluding those from secondary particles).
We then record the entrance position of the first G4Hit in the EMCal for each
primary particle.
This entrance position is taken as the location where the primary particle hits the
CEMC.

2. Shower center with energy weight:
This represents the energy-weighted center of the electromagnetic shower.
We read all G4Hits produced in the CEMC (including those from secondary particles)
and compute the weighted average of their positions, using the energy deposition of
each G4Hit as the weight.
This gives us the energy-weighted center of the shower.

Reco level: 3. Cluster reco with geometry center(4. with inner face center)

In our macro Fun4All_physiTuto.C, the G4Setup_sPHENIX.C file is included, and
within it, the G4_CEmc_Spacal.C file is also included.
In Fun4All_physiTuto, the cluster reconstruction code is triggered by:

if (Enable::CEMC_CLUSTER) CEMC_Clusters();

5

This CEMC_Clusters() function is defined in G4_CEmc_Spacal.C.
The reconstruction uses the RawClusterBuilderTemplatemodule, which in turn
calls the BEmcRecmodule to perform cluster reconstruction.

The process involves: Using a threshold to eliminate noisy towers, keeping only
towers with significant energy deposition. Grouping adjacent towers that pass the
threshold into clusters based on continuity. Using the energy of each tower as a
weight to calculate the energy-weighted average position (x, y, z) of the cluster.

Relevant code references are in the RawClusterBuilderTemplate and BEmcRec

modules.

Initially, the tower positions were defined by projecting the tower onto a fixed radius
of 93.5 cm. However, this approach has known issues in the reconstruction.

In my study, I use the updated tower geometry description provided by Virgile:

// Load the modified geometry

CaloGeomMappingv2 *cgm = new CaloGeomMappingv2();

cgm->set_detector_name("CEMC");

cgm->setTowerGeomNodeName("TOWERGEOM_CEMCv3");

se->registerSubsystem(cgm);

With this code, we load the updated tower geometry.
The node TOWERGEOM_CEMCv3 stores the new RawTowerGeomv5 objects, each of
which contains the eight vertices of the tower.
You can obtain the center of the tower using get_center_x/y/z(), or the center of
the tower's inner face using get_center_int_x/y/z().

In the tutorial, the function:

void setUseRawTowtTowerGeomNodeName("TOWERGEOM_CEMCv3");

specifies from which node the tower geometry is read — in this case, the newly
registered TOWERGEOM_CEMCv3.

After loading the new tower geometry, we have two options for cluster position
reconstruction:

3. Cluster reco with geometry center: using the tower's geometric center.

4. Cluster reco with inner face center: using the center of the tower’s inner surface.

I added two functions in RawClusterBuilderTemplate:

6

void setUseRawTowerGeomv5(bool flag = true) { m_use_RawTowerGeomv5 =

flag; }

This decides whether to use the new tower geometry.

void setProjectToInnerSurface(bool flag = true)

{ m_project_tower_innersurface = flag; }

This decides whether to reconstruct cluster positions using the tower’s inner face
center.

In the implementation of CEMC_Clusters() in G4_CEmc_Spacal.C, I use:

RawClusterBuilderTemplate *ClusterBuilder = new

RawClusterBuilderTemplate("EmcRawClusterBuilderTemplate");

ClusterBuilder->setUseRawTowerGeomv5(true);

ClusterBuilder->setProjectToInnerSurface(true);

To use the new EMCal tower geometry setup and others I modified, you need

to replace the analysis modules in CaloBase and CaloReco mentioned below

with my updated code. You can access the code under

/sphenix/user/jzhang1/Virgikguide

Then, compile the tutorial class under

/sphenix/user/jzhang1/INTT-EMCAL/InttSeedingTrackDev/ParticleGen/physiTuto ,

and after that, you can run Fun4All_physiTuto.C from within the

/sphenix/user/jzhang1/INTT-EMCAL/InttSeedingTrackDev/ParticleGen/macro .

7

Since all of these depend on RawTowerGeom on CaloBase and Reconstruction on
CaloReco, please compile CaloBase directory first, then compile CaloReco directory,
and finally compile your analysis module class.

RawTowerGeomv5.h & RawTowerGeomv5.cc
These files are used to store the descriptions of the eight vertices of each tower,
along with some simple functions to obtain the centers of certain surfaces.

CaloGeomMappingv2.h & CaloGeomMappingv2.cc
CaloGeomMappingv2 is used to load the new, accurate EMCal geometry and store it
within RawTowerGeomv5.

RawClusterBuilderTemplate.h & RawClusterBuilderTemplate.cc

void setUseRawTowerGeomv5(bool flag = true) { m_use_RawTowerGeomv5 = flag; }

void setProjectToInnerSurface(bool flag = true) { m_project_tower_innersurface = flag; }

Modifications have been made so that the cluster reconstruction uses the settings
from RawTowerGeomv5. Additionally, two small interfaces are provided to choose
which point of the tower is used for reconstruction (either the inner surface or the
center of the tower).

CaloGeomTest.h & CaloGeomTest.cc
These files simply output the geometry settings for verification purposes and are not
particularly useful beyond that.

Fun4All_physiTuto.C

// Load the modified geometry

CaloGeomMappingv2 *cgm = new CaloGeomMappingv2();

cgm->set_detector_name("CEMC");

cgm->setTowerGeomNodeName("TOWERGEOM_CEMCv3");

se->registerSubsystem(cgm);

// tutorial info get

tutorial* analysis_module = new tutorial("name", output_directory, output_filename);

analysis_module->setTowerGeomNodeName("TOWERGEOM_CEMCv3");

This code loads the new geometry settings. In Fun4All, the included header
<G4Setup_sPHENIX.C> (which in turn includes "G4_CEmc_Spacal.C") provides the
source for CEMC_Clusters(). Therefore, modifications were made in
G4_CEmc_Spacal.C within the CEMC_Clusters() function to enable the use of the
new geometry for cluster reconstruction. The tutorial module is used to read the
information, and it has also been modified accordingly.

8

tutorial.h & tutorial.cc

prepareEMCal(topNode);

prepareEMCalClus(topNode);

prepareG4Turth(topNode);

prepareG4HIT(topNode);

These functions handle the preparation of EMCal reconstruction and now include
G4-level information such as primary particles and G4 hits.

G4_CEmc_Spacal.C

// JingyuM

void CEMC_Clusters()

Within the CEMC_Clusters() function mentioned above, modifications have

been made for cluster reconstruction. Specifically, the reconstruction

now makes use of both the inner surface center and the overall tower center

of each tower.

