Please take a quick look at the slides as follow | prepared to get a basic

understanding of the EMCal-related code and G4Hit in sPHENIX.

github:

Ca I O Ba Se a n d Ca | O Re CO sPHENIX-Collaboration/coresoftware/offline/packages/CaloBase

sPHENIX-Collaboration/coresoftware/offline/packages/CaloReco

The classes in **CaloBase** store information related to the calorimeter (calo), which can be saved and
retrieved.
At the **tower level**:

- 'RawTower’ stores deposited energy and other information within a tower,
- 'RawTowerGeom' stores the geometry information of the tower, and

- “TowerInfo" contains internal information about the tower.

% % *kk -
At the **cluster level** : set_energy CaléBase —_

- "RawCluster” holds information related to clusters.

set_* —— —> pget_*

*class_Container is map of <id, *class>

The classes in **CaloReco** are used to analyze and reconstruct calo data, and then write the processed
results into the classes in **CaloBase**. For instance, ‘RawClusterBuilderTemplate" reads in ‘RawTower™ and
‘'RawTowerGeom’, and uses them to reconstruct ‘RawCluster’.

In simple terms, the classes in **CaloBase** act like data-recording objects (can be set and get), while
CaloReco is like a data-analysis macro. CaloBase serves as both the input and output for CaloReco. z

Commonly used data

simu:
Primary Particle -- information such as the primary particle's ID, momentum, and
pP_XyzZ ...

G4hit_CEMC -- energy deposition process in the EMCal I

Tower

Block

32 Sectors

Structure of Sector

reco: raw data (wave, cell ...)
-> tower -- (deposited energy, eta phi(bin), xyz ... of tower
-> cluster -- (deposited energy, eta phi, xyz ... of cluster)

These data are stored as CaloBase class, \ A A LS / /L /

And we can change the class reco by change resposed CaloReco code y

1

where to access the data

Node Tree under TopNode TOP
i e)/

teNode)/

N V' (PHIODataNode)

G4HIT ABSORBER HCALIN (PHIODataNode)

Print it from the cmd line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

NOd

QRO
Composi
T A&

G4HIT HCALOUT (PHIODataNode) DST and RUN Node:_ default for I/O
G4HIT _ABSORBER_HCALOUT (PHIODataNode) el
SVTX (PHCompositeNode)/ "RUN- rnyase
SvixHitMap (PHIODataNode) Objects under the DST node ar.e 1.‘eset after
SvtxClusterMap (PHIODataNode) every event to pr-event event mlxmg. You
SVTX EVAL (PHCompositeNode)/ can select the objects tg be saved in the
SvtxC Map G4HIT SVTX Links (PHIODataNode) output file. Subnodes like SVTX are saved
_ - and restored as well. DST/RUN nodes can
CYTINDERGEOM SVTX (PHIODataNode) be restored fro.m file under other TopNodes
CYLINDERGEOM_SVTXSUPPORT (PHIODataNode) e .
CYLINDERGEOM_EMCELECTRONICS_0 (PHIODataNode) | OPiects cannot be added while running to
CYLINDERGEOM_HCALIN_SPT (PHIODataNode) AT SERE I

PAR (PHCompositeNode)/

SVTX (PHCompositeNode)/ Commonly used data in EMCal analysis mentioned on the

SR BRI GRS previous page, are usually classes from CaloBase. ,

access the data we need

Please change the nodename ("nodename") at the end to the one where your data is stored,
or we can ‘root -l your_dstfile’, then *tree->Print()" to display the node tree and see how you should write

usually:
get primary particle:
auto m_truth_info = findNode::getClass<PHG4TruthinfoContainer>(topNode, "G4Truthinfo");

get g4hit:
auto hits_CEMC = findNode::getClass<PHG4HitContainer>(topNode, "G4HIT_CEMC");

get calo data:

auto Geom_container = findNode::getClass <RawTowerGeomContainer> (topNode, "TOWERGEOM_CEMC");
auto Tower_container = findNode::getClass <RawTowerContainer> (topNode, "TOWER_SIM_CEMC");

auto EMCal_tower_calib = findNode::getClass <TowerInfoContainerv2> (topNode, "TOWERINFO_SIM_CEMC");
auto Cluster_container = findNode::getClass <RawClusterContainer> (topNode, "CLUSTER_CEMC");

for (inti = 0; i < *class_container -> size(); ++i) //loop over container { *class = *class_container->get_* } °

G4Hit:

GEANT steps

GEANT propagates particles one step at a time. The step size is
determined by the physics processes associated with the current
particle or when a boundary between volumes is crossed

After each step the user stepping method is called with a pointer
to the current volume which has access to the full information

(energy loss, particle momentum at beginning and end of step, ...)

12/01/2022

Our G4Hits (you’ll hear us talking about them a lot)

In our stepping method we add the energy loss in each volume and
store the entry and exit coordinates and time (and subdetector specific
info like ionization energy, light output,...)

We also keep the ancestry for G4Hits so any hit can be traced back to a
primary particle. To reduce size we do not store particles which do not leave
G4Hits and are not in the ancestry of a particle which created a G4Hit

Introduction to Fun4All 11

12/01/2022

Goal:

Obtain the position measurement information of electrons and positrons (charged
hadrons) by the EMCal.

When a charged particle strikes the EMCal, it initiates an electromagnetic shower,
depositing energy within the calorimeter. The EMCal readout units are towers, and
we can reconstruct the EMCal’s measurement of charged particles by utilizing the
information from the towers.

Moreover, in simulations, we have access to all the underlying truth information.
We treat the truth-level information obtained from Geant4 as the "true" reference
and compare the reconstructed results to this truth to evaluate performance and
apply corrections to make the reconstruction closer to the truth.

Regarding position reconstruction for charged particles, | am using four types of
position information:

Truth level: The reference code is in the CodeExplain.C file.

1. Primary particle first hit on CEMC:

This represents the position where the primary charged particle first hits the EMCal.
We first identify all primary particles and collect the G4Hits produced by these
primaries (excluding those from secondary particles).

We then record the entrance position of the first G4Hit in the EMCal for each
primary particle.

This entrance position is taken as the location where the primary particle hits the
CEMC.

2. Shower center with energy weight:

This represents the energy-weighted center of the electromagnetic shower.

We read all G4Hits produced in the CEMC (including those from secondary particles)
and compute the weighted average of their positions, using the energy deposition of
each G4Hit as the weight.

This gives us the energy-weighted center of the shower.

Reco level: 3. Cluster reco with geometry center(4. with inner face center)

In our macro Fun4all physiTuto.C, the G4setup sPHENIX.C fileis included, and
within it, the G4 CEmc Spacal.c fileis also included.
In Fun4all physiTuto, the cluster reconstruction code is triggered by:

if (Enable::CEMC _CLUSTER) CEMC Clusters();

This cEMC clusters () function is defined in G4 CEmc Spacal.cC.
The reconstruction uses the RawClusterBuilderTemplate module, which in turn
calls the BEmcRec module to perform cluster reconstruction.

The process involves: Using a threshold to eliminate noisy towers, keeping only
towers with significant energy deposition. Grouping adjacent towers that pass the
threshold into clusters based on continuity. Using the energy of each tower as a
weight to calculate the energy-weighted average position (x, y, z) of the cluster.

Relevant code references are in the RawClusterBuilderTemplate and BEmcRec
modules.

Initially, the tower positions were defined by projecting the tower onto a fixed radius
of 93.5 cm. However, this approach has known issues in the reconstruction.

In my study, | use the updated tower geometry description provided by Virgile:

// Load the modified geometry

CaloGeomMappingv?2 *cgm = new CaloGeomMappingv2 () ;
cgm->set detector name ("CEMC") ;
cgm->setTowerGeomNodeName ("TOWERGEOM CEMCv3") ;

se->registerSubsystem (cgm) ;

With this code, we load the updated tower geometry.

The node TOWERGEOM CEMCv3 stores the new RawTowerGeomv5 objects, each of
which contains the eight vertices of the tower.

You can obtain the center of the tower using get center x/y/z (), or the center of
the tower's inner face using get center int x/y/z ().

In the tutorial, the function:

void setUseRawTowtTowerGeomNodeName ("TOWERGEOM CEMCv3") ;

specifies from which node the tower geometry is read — in this case, the newly
registered TOWERGEOM CEMCv3.

After loading the new tower geometry, we have two options for cluster position
reconstruction:

3. Cluster reco with geometry center: using the tower's geometric center.
4. Cluster reco with inner face center: using the center of the tower’s inner surface.

| added two functions in RawClusterBuilderTemplate:

void setUseRawTowerGeomv5 (bool flag = true) { m use RawTowerGeomv5 =

flag; }

This decides whether to use the new tower geometry.

void setProjectToInnerSurface (bool flag = true)

{ m_project tower innersurface = flag; }

This decides whether to reconstruct cluster positions using the tower’s inner face
center.

In the implementation of CEMC Clusters() in G4 CEmc_Spacal.C, | use:

RawClusterBuilderTemplate *ClusterBuilder = new
RawClusterBuilderTemplate ("EmcRawClusterBuilderTemplate") ;
ClusterBuilder->setUseRawTowerGeomvb (true) ;

ClusterBuilder->setProjectToInnerSurface (true) ;

To use the new EMCal tower geometry setup and others I modified, you need
to replace the analysis modules in CaloBase and CaloReco mentioned below
with my updated code. You can access the code under
/sphenix/user/jzhangl/Virgikguide

Then, compile the tutorial class under
/sphenix/user/jzhangl/INTT-EMCAL/InttSeedingTrackDev/ParticleGen/physiTuto ,
and after that, you can run Fun4All physiTuto.C from within the
/sphenix/user/ jzhangl/INTT-EMCAL/InttSeedingTrackDev/ParticleGen/macro .

Since all of these depend on RawTowerGeom on CaloBase and Reconstruction on
CaloReco, please compile CaloBase directory first, then compile CaloReco directory,
and finally compile your analysis module class.

RawTowerGeomv5.h & RawTowerGeomv5.cc
These files are used to store the descriptions of the eight vertices of each tower,
along with some simple functions to obtain the centers of certain surfaces.

CaloGeomMappingv2.h & CaloGeomMappingv2.cc
CaloGeomMappingv2 is used to load the new, accurate EMCal geometry and store it
within RawTowerGeomv5.

RawClusterBuilderTemplate.h & RawClusterBuilderTemplate.cc

void setUseRawTowerGeomv5(bool flag = true) { m_use_RawTowerGeomv5 = flag; }

void setProjectToInnerSurface(bool flag = true) { m_project_tower_innersurface = flag; }

Modifications have been made so that the cluster reconstruction uses the settings
from RawTowerGeomv5. Additionally, two small interfaces are provided to choose
which point of the tower is used for reconstruction (either the inner surface or the
center of the tower).

CaloGeomTest.h & CaloGeomTest.cc
These files simply output the geometry settings for verification purposes and are not
particularly useful beyond that.

FundAll_physiTuto.C

CaloGeomMappingv2 *cgm = new CaloGeomMappingv2();
cgm->set_detector_name("CEMC");
cgm->setTowerGeomNodeName ("TOWERGEOM_CEMCv3");

se->registerSubsystem(cgm);

tutorial* analysis_module = new tutorial("name", output_directory, output_filename);

analysis_module->setTowerGeomNodeName (" TOWERGEOM_CEMCv3");

This code loads the new geometry settings. In Fun4All, the included header
<G4Setup sPHENIX.C> (which in turn includes "G4 CEmc spacal.c") provides the
source for CEMC Clusters(). Therefore, modifications were made in
G4 CEmc_Spacal.C within the cEMC Clusters () function to enable the use of the
new geometry for cluster reconstruction. The tutorial module is used to read the
information, and it has also been modified accordingly.

tutorial.h & tutorial.cc

prepareEMCal(topNode);

prepareEMCalClus(topNode);

prepareG4Turth(topNode);

prepareG4HIT (topNode);

These functions handle the preparation of EMCal reconstruction and now include
G4-level information such as primary particles and G4 hits.

G4_CEmc_Spacal.C

CEMC_Clusters()

Within the CEMC Clusters() function mentioned above, modifications have
been made for cluster reconstruction. Specifically, the reconstruction
now makes use of both the inner surface center and the overall tower center
of each tower.

