【話題提供】

超高出力高周波半導体アンプの構成に向けた技術

京都大学 成長戦略本部 池田 光

2025年7月11日

目次

- 1. 超高出力高周波電源
- 2. 高出力半導体デバイス
- 3. 基板/部品
- 4. 高放熱構造
- 5. まとめ

1. 超高出力高周波電源(目標仕樣)

■目標仕様

● 周波数:10MHz ~ 100MHz

● デバイス: 半導体

● 出力電力:~ 100kW

動作:パルス、CW

● 放熱:水冷、空冷

1. 超高出力高周波電源(半導体の動向)

■ 半導体技術の進歩により、

真空管

⇒ 固体デバイス へ交換

● 真空管

 \Rightarrow

トランジスタ(1960年代)

● 撮像管

 \Rightarrow

CCD(1980年代)

● ブラウン管

 \Rightarrow

プラズマ、液晶(2000年代)

有機EL(2010年代)

● 電球·蛍光灯

 \Rightarrow

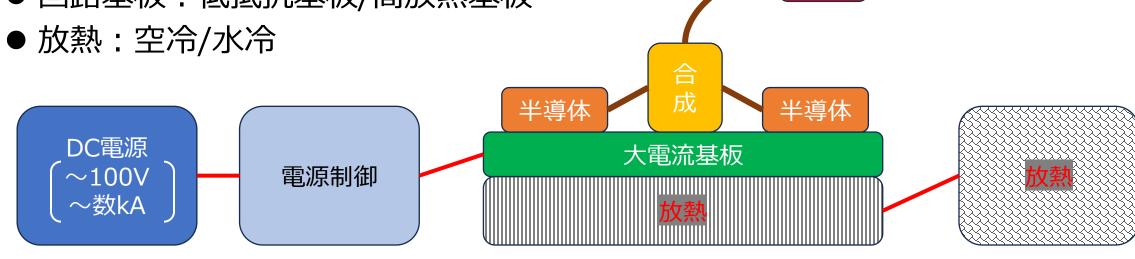
LED(2000年代)

● マグネトロン

 \Rightarrow

固体デバイス(固体発振器)へ

※ 東京計器のHPより


【電子レンジの固体発振器化は進んでいない】

1. 超高出力高周波電源(構成)

■ 構成要素

- DC電源: SiC/GaNトランジスタを用いた高効率電源
- 高周波電源の制御:ハード/ソフト
- 半導体デバイス: Si/SiC/GaN/Ga₂O₃等
- 高周波大電力信号の合成:低損失合成
- 回路基板:低抵抗基板/高放熱基板

出力

2. 高出力半導体デバイス(比較)

■ Si-LDMOSFET

■ SiC-MOSFET

■ GaN-HEMT

■ Ga₂O₃-MOSFET

■ Diamond-MOSFET

: 1GHz以下では1kWを超える高出力デバイスあり

: 縦型の高耐圧・大電流スイッチングデバイス

: 通信用途·300W@2.5GHz(GaN on SiC)

: スイッチング用途・600V耐圧(GaN on Si)

: 高耐圧・高周波動作が可能(低放熱・高温動作・低コスト)

: 高耐圧・高周波動作が可能(高放熱・高温動作・高コスト)

	Si-LDMOSFET	SiC-MOSFET	GaN-HEMT	Ga ₂ O ₃ -MOSFET	Diamond-MOSFET
動作周波数(GHz)	~ 2.5	\sim 0.01	~ 200	~ 50?	?
出力電力(W)	~2,500@100MHz		\sim 300@2.5GHz	\sim 1,000?@2.5GHz	?
電源電圧(V)	65	1	50	200?	300?
パッケージ	セラミック/樹脂	-	セラミック	?	?
熱伝導率(W/cmK)	1.5	2.7	2.1	0.27	22.0
コスト	安い	高い	高い	安い	高い
バンドギャップ(eV)	1.1	3.3	3.4	4.8	5.5
現状	商品化	商品化	商品化	開発中	開発中

2. 高出力半導体デバイス(市販デバイス)

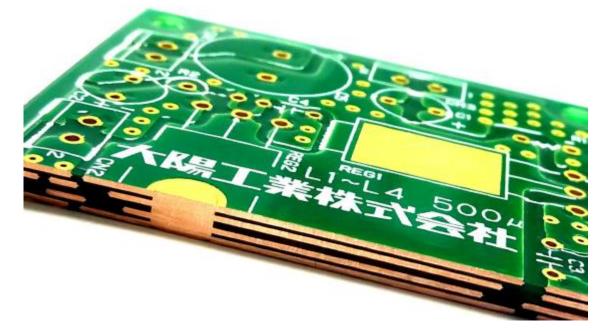
■大出力高周波デバイス (Si-LDMOSFET)

● NXP: 旧Freescale (Philips/Motorola)

● Ampleon:旧NXP (中国)

● Innograion:
3kW(CW)出力デバイスを開発中
(中国)

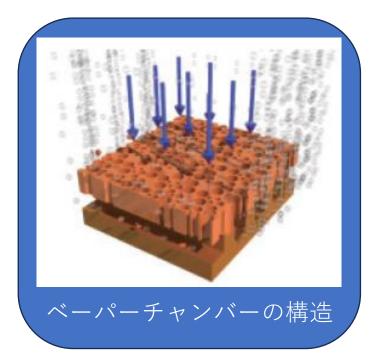
	NXP	Ampleon	Innogration	
品名	MRFX1K80H	ART2K5TFUS	MF012K5VPX	
動作周波数	1.8~400MHz	1∼400MHz	10∼200MHz	
出力電力	1,800W(CW)	2,500W(Pulse)	2,500W(Pulse)	1,450W(CW)
電源電圧	65V	75V	50V	42V
パッケージ	P.S.O.	1 2 Innogration		gration
効率	78%(144MHz)	76%(108MHz)	75%(98MHz)	90%(60MHz)
利得	23.5dB	29.5dB	18dB	19.8dB
反射波対応	65:1(Pulse)	65:1(Pulse)	65:1(Pulse)	
開発	_	_	高耐圧化、高放熱化	

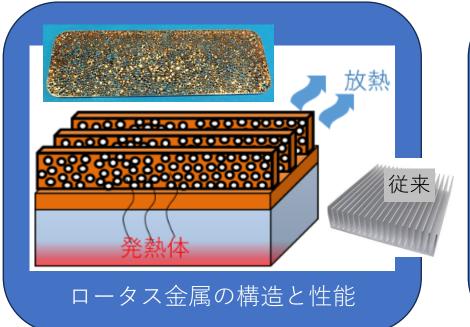

3. 基板/部品

■基板

- 低損失基板 (大電流が流れるため)
- 裏面に金属板(放熱のため)

■部品


- 高耐圧 (大電力のため)
- 低損失 (大電力のため)
- 大容量(周波数が低いため)



※ 太陽工業のHPより

4. 高放熱構造

- 熱拡散
 - 点熱源を面熱源へ広げる ⇒ ベーパーチャンバー (沸騰冷却)
- 放熱
 - 小型・高放熱 ⇒ ロータス金属 (レンコンのような穴の開いた金属) で数百倍の表面積で放熱
- 熱変換
 - 空冷/水冷(高周波で液冷は厳しい)⇒素子を冷媒の中に入れられれば、高放熱が可能(富岳のように)

5. まとめ

- 目標仕様の高周波電源を実現するためにの課題が判明
- 今後の可能性
 - 大信号合成器ができれば、市販デバイスで数10kWの高周波電源は可能性あり?
 - 半導体デバイスはSi-LDMOSFETだが、将来はGa₂O₃デバイスが有望?
 100kWの実現には10kW程度のデバイス(電圧が200V以上)が必要?
 - 放熱はロータス金属を用いたベーパーチャンバー等が有望?

