

Mass measurements of neutron-rich isotopes at the CARIBU facility

Guy Savard

Argonne National Laboratory

&

University of Chicago

RIBF-ULIC Symposium on Physics of Rare-RI Ring Riken Nishina Center, November 10-12 2011

Outline

- Why neutron rich nuclei?
- Description of CARIBU
- First mass measurement results
- Current efforts

Nuclear structure of neutron-rich nuclei

- Heavy neutron-rich nuclei region:
 - region mostly unexplored even for the most basic properties
 - weakly bound with diffuse surface ... reduced spin-orbit coupling, shell model possibly modified
 - signature can take many forms: single particle structure, ground state properties, etc
 ...

The r-process path

r-process:

- Process known to exist
- Exact site unknown
- Path critically depends on nuclear properties of neutron-rich nuclei:
 - mass
 - lifetime
 - β-delayed neutrons
 - fissionability

Efficient techniques exist to obtain this information but the required beams are missing in most of this region of the chart of nuclides.

CARIBU - Californium Rare Ion Breeder Upgrade

Access to n-rich region obtained at ATLAS via fission of the most neutron-rich "available" very heavy nuclei (e.g. ²⁵²Cf)

Project goal: Provide neutron-rich radioactive beams to user community

Neutron-rich beam source: CARIBU "front end" layout

Main components of CARIBU

- PRODUCTION: "ion source" is ²⁵²Cf source inside gas catcher
 - Thermalizes fission fragments
 - Extracts all species quickly
 - Forms low emittance beam
- SELECTION: Isobar separator
 - Purifies beam
- DELIVERY: beamlines and preparation
 - Switchyard
 - Low-energy buncher and beamlines
 - Charge breeder to Increase charge state for post-acceleration
 - Post-accelerator ATLAS and weak-beam diagnostics

CARIBU gas catcher: transforms fission recoils into a beam with good optical properties

- Based on smaller devices developed at ANL
 - Radioactive recoils stop in sub-ppb level impurity Helium gas
 - Radioactive ion transport by RF field + DC field + gas flow
 - Stainless steel and ceramics construction (1.2 m length, 50 cm inner diameter)
 - Fast and essentially universally applicable
 - Extraction in 2 RFQ sections with µRFQs for differential pumping

RF cone and walls

RF applied to ring electrodes in alternating phases @ ~ MHz

Average force is toward weaker field - IN

Ion extraction and beam formation: CARIBU gas catcher, RFQs and acceleration section

The very large high-intensity gas catcher for CARIBU

- Gas Catcher/RFQ cooler isolated from main platform and biased to 50 kV.
- Installed inside secondary enclosure with pumping, cooling and gas distribution

Under 12000 lbs of shielding

Californium source and transport cask

- Cf source is made at the HIFR high-flux reactor in Oak Ridge (~50 rem/hr unshielded)
 - Progression of 3 sources ... 2 mCi, 80 mCi, 1 Ci
- Transported in a steel/cement cask to Argonne
- Installed in the CARIBU transport cask using manipulators in hot cells at Argonne
- Move in the cask on site at Argonne
- For installation in the gas catcher, the source and shielding plug are pushed from the storage location into position at the end of the gas catcher.
- > The assembly is sealed to the gas catcher, the source being inside the gas catcher.

Extracted isotope yield at low energy (50 keV)

"Compact" isobar separator

- Need to select specific activity
- •Take advantage of low emittance and energy spread of extracted beams:

Beam Properties from gas catcher:

 $\epsilon \approx 3 \pi$ mm•mr $\delta E \approx 1 eV$. 1 mm dia. (circular) beam

 θ_{max} , ϕ_{max} = $\pm 6 \text{ mr}$

- Matching sections at entrance and exit transform beam to a ribbon beam.
- 2 x 60 degree bends, R = 50 cm
- Dispersion 22.8 meters
- First order mass resolution: 1/20,000
- •3 electrostatic multipoles correct through 5th order
- Small enough footprint to fit on HV platform
- •All optics, except for bending magnet, is electrostatic so that tune is essentially mass independent

Photo of CARIBU w/ beam paths overlay to ECRCB & Trap

Going from mass to specific activity

Zooming in on specific activity

Beam Delivery

- After isobar separation, two options for beam use
- Low energy experiments after beam bunching
 - Mass measurement
 - Laser Spectroscopy
 - Beta decay studies
- Reaccelerated Beams
 - Use ECR-1 as charge breeder
 - Inject ions into ATLAS in high charge state (q/m > 0.15) and energy (~100-200 keV)

CARIBU ECR Charge-Breeder System

ECR Charge Breeder Results

In order to accelerate beams in ATLAS the charge-to-mass ration (q/m) must be raised to >1/8 (depending on the desired energy).

Best breeding efficiencies: 11-16% for all gases, solid, & RIBs.

Rate and Efficiency for Mass 142/25+, 129Xe²⁵⁺ and 133Cs²⁶⁺ as function of Voltage difference between ECRCB & 1+ source

CARIBU beams delivered to Gammasphere

CARIBU beams reaccelerated to Coulomb barrier and delivered to Gammasphere

¹⁴²Cs in Gammasphere

¹⁴⁴Cs in Gammasphere

The power of Gammasphere : γ – γ correlations

- High efficiency, granularity, symmetry and angular coverage of Gammasphere allows
 - detailed decay spectroscopy to be performed
 - GS → beating down the pandemonium effect
 - γ - γ angular correlations
 - fix spin sequences

 γ – γ correlation between states in 142 Ba populated in the decay of 142 Cs

Guy Savard, Argonne National Laboratory

Low-energy buncher

- provides a pulse structure on low-energy beam and increases peak intensity by about 5 orders of magnitude
- •Allows energy to be tuned from a few 100s of eV to 50 keV

CARIBU and low-energy beamline

The CPT apparatus at CARIBU

Penning Trap

2 kV pulsed beam

cryogenic linear ion trap

Sample time-of-flight (TOF) spectrum

Well-known calibrant mass is a requirement for accurate measurements, use 133 Cs (known to ~ 0.01 keV) in this region.

CPT Fission Fragment Measurements in Triangle Room ²⁵²Cf Heavy Fission Peak

- 252Cf fission fragments from gas catchers in ATLAS target area II.
- 70 measurements near target 15 keV precision ($\delta m/m \sim 10^{-7}$)
- Need more production farther from stability to get on r-process path
 - Final CARIBU source will be 10000 times stronger

Enough data to compare to other techniques

CPT vs ISOLTRAP

$$\chi^2/n = 0.9$$

CPT vs FRS-ESR

$$\chi^2/n = 1.8$$

CPT vs beta endpoint

$$\chi^2/n = 10.7$$

First CARIBU measurements: n-rich isotope masses

- First physics measurements and yield mapping at low energy
 - 25(+2) radioactive nuclides identified and measured at CPT
- Combined (Area II + CARIBU) work already covers most elements in heavy peak
 - universal
 - changing mass is turning one knob

¹³²Sb and ^{132-m}Sb

Measurement of isomer excitation energy to 4 keV No direct measurement, lit: 150-250 keV estimate based on possible level schemes

Current efforts

- Facility works.
 - Next ATLAS PAC just announced on Monday with CARIBU beams available. Proposals due on Dec. 12 2011. PAC meeting on Jan. 13-14 2012.
- Efforts ongoing to reach full intensity and improve on limitations observed in first round of experiments:
 - Isobaric contamination at low energy
 - Stable beam contaminants in reaccelerated beams
 - Installing the full intensity 1 Ci source
- Currently working on improving isobar separation at low energy
 - New ejection pulsing circuitry to improve stability of beam energy and therefore mass selection
 - Improve control and locking of isobar separator magnet

Guy Savard, Argonne National Laboratory

Current efforts

- Preparing for 1Ci source installation
 - New micro-RFQ's in ion cooler to increase transmission efficiency at large intensity
 - Modify flow pattern and increase helium gas flow in gas catcher to keep gas

cleaner—fewer contaminant molecules

Installation of new cover foil on source in hot cells

- Characterize thickness of current 60 mCi source
- Additional diagnostics for yield identification —
- Tests ongoing at ORNL in preparation for 1Ci source deposition in December 2011.

Guy Savard, Argonne National Laboratory

Status

- CARIBU is the first RIB facility based on the gas catcher system. It has met its commissioning goals.
- CARIBU is delivering low-energy beams for physics experiments and reaccelerated beams for developments
 - Open to community in current PAC proposal cycle \rightarrow proposals due Dec. 12 2011
- All components work essentially as expected ... lots of work to optimize and map yield and beam purity
- Mass measurement campaign on n-rich isotopes started
 - All colored isotopes are accessible to high-precision measurements
 - Will provide excellent calibration in the region for indirect measurements on more exotic isotopes

