

Light-Ion Induced Direct Reactions with Stored Radioactive Beams – The EXL Project at the Present ESR and at FAIR

Peter Egelhof GSI Darmstadt, Germany

Symposium on Physics of RARE-RI Ring

RIKEN, Tokio, Japan November 10 - 12, 2011 Light-Ion Induced Direct Reactions with Stored Radioactive Beams – The EXL Project at the Present ESR and at FAIR

t FAIR

- I. Motivation and Research Objectives of EXL*
- II. The EXL Detector Setup Concept and Design Goals
- III. R&D on the EXL Recoil Detector
- IV. Feasibility Studies and First Experiments at the ESR
- V. Conclusions

^{*} EXL: EXotic Nuclei Studed in Light-Ion Induced Reactions at the NESR Storage Ring

I. Motivation and Research Objectives of EXL

Perspectives at the GSI Future Facility FAIR

regions of interest:

⇒ towards the driplines for medium heavy and heavy nuclei

physics interest:

- matter distributions (halo, skin...)
- I single-particle structure evolution (new magic numbers, new shell gaps, spetroscopic factors)
- I NN correlations, pairing and clusterization phenomena
- I new collective modes (different deformations for p and n, giant resonance strength)
- I parameters of the nuclear equation of state
- I in-medium interactions in asymetric and low-density matter
- I astrophysical r and rp processes, understanding of supernovae

Light-Ion Induced Direct Reactions

- I elastic scattering (p,p), (α,α) , ... nuclear matter distribution $\rho(r)$, skins, halo structures
- I inelastic scattering (p,p'), (α , α '), ... deformation parameters, B(E2) values, transition densi ies, giant resonances
- I charge exchange reactions (p,n), (³He,t), (d, ²He), ... Gamow-Teller strength
- transfer reactions (p,d), (p,t), (p, ³He), (d,p), ...
 single particle structure, spectroscopic factors
 spectroscopy beyond the driplines
 neutron pair correlations
 neutron (proton) capture cross sections
- I knock-out reactions (p,2p), (p,pn), (p,p ⁴He)... ground state configurations, nucleon momentum distributions, cluster correlations

FAIR: Facility for Antiproton and Ion Research

FAIR: Facility Characteristics

- •Cooled beams
- •Rapidly cycling superconducting magnets

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present in intensity
- 2(4)x10¹³/s 30 GeV protons
- 10^{10} /s 238 U⁷³⁺ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
Antiprotons 3 - 30 GeV

Storage and Cooler Rings

- •Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

Expected Production Rates

- R³B: <u>Reactions with Relativistic Radioactive Beams</u> ⇒ High Energy Branch
- EXL: <u>EX</u>otic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring ⇒ Ring Branch
- ELISe: ELectron Ion Scattering in a Storage Ring e-A Collider ⇒ Ring Branch
- AIC: Antiproton Ion Collider ⇒ Ring Branch

The R³B experiment: a universal setup for kinematical complete measurements

Experiments with Stored Exotic Nuclei

EXL: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-Ion Induced Direct Reactions at Low Momentum Transfer

- I elastic scattering (p,p), (α , α), ... nuclear matter distribution ρ (r), skins, halo structures
- I inelastic scattering (p,p'), (α , α '), ... deformation parameters, B(E2) values, transition densi ies, giant resonances

I transfer reactions (p,d), (p,t), (p, ³He), (d,p), ... single particle structure, spectroscopic factors, spectroscopy beyond the driplines, neutron pair correlations, neutron (proton) capture cross sections

I charge exchange reactions (p,n), (³He,t), (d, ²He), ... Gamow-Teller strength

I knock-out reactions (p,2p), (p,pn), (p,p ⁴He)... ground state configurations, nucleon momentum distribu ions

for almost all cases:

region of low momentum transfer contains most important information

Speciality of EXL:

measurements at very low momentum transfer

 \Rightarrow complementary to R³B !!!

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- I Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - \Rightarrow in combination with electron scattering (ELISe project @ FAIR):

separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

- I Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>-

- Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

 \Rightarrow electron capture rates in the presupernova evolution (core collaps) method: (³He,t), (d,²He) charge exchange reactions <u>at low q</u> Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering

Experimental Setup: Active Target IKAR and Aladin Magnet

Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering at Low Momentum Transfer

<u>nuclear matter</u> <u>radii:</u>	nucleus	R _{matter} , fm	R _{core} , fm	R _{halo} , fm
	⁴He	1.49 (3)		
	⁸ He	2.45 (7)	1.55 (15)	3.08 (10)
	⁹ Li	2.43 (7)		
	¹¹ Li	3.62 (19)	2.55 (12)	6.54 (38)

- l extended neutron distribution in ⁸He and ¹¹Li obtained
- I size of core, halo and total matter distribution deter ned with high accuracy

Elastic Proton Scattering from ¹⁴Be

differential cross section:

- ¹⁴Be exhibits a pronounced core-halo structure
- the picture of a ¹²Be-core + 2 valence neutron structure is confirmed
- the present data favour a relatively large s-wave component (see I. Thompson et. al, Phys. Rev. C53 (1996) 708)

Proposed Experiments at FAIR

- I investigation of nuclear matter distributions along isotopic chains towards proton/neutron asymmetric matter
- I investigation of the same nuclei by (e,e) (ELISe) and (p,p) (EXL) scattering
 - õ separate neutron/proton content of nuclear matter
 - ð unambiguous and "model independent" determination of size and radial shape of neutron skins (halos)

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- I Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - \Rightarrow in combination with electron scattering (ELISe project @ FAIR):

separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

- I Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>-

- Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

 \Rightarrow electron capture rates in the presupernova evolution (core collaps) method: (³He,t), (d,²He) charge exchange reactions <u>at low q</u>

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

- required beam energies:
 E ≈ 200 ... 740 MeV/u
 (except for transfer reactions)
- required targets: ^{1,2}H, ^{3,4}He
- most important information in region of low momentum transfer
 - ⇒ <u>low recoil</u> energies of recoil particles
 - \Rightarrow need thin targets for sufficient angular and energy resolution

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high <u>resolution</u> due to: beam cooling, thin target (10¹⁴-10¹⁵ cm⁻²)
- gain of <u>luminosity</u> due to: continuous beam accumulation and recirculation
- l low <u>background</u> due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- experiments with isomeric beams

Experiments at very low momentum transfer can only be done at EXL (except with active targets, but with substantial lower luminosity)

Only the world-wide unique combination of Super-FRS and NESR provides high resolution experiments with high luminosity

External Target Versus Internal Target

Application of Internal and External Targets – a Comparison

assumptions:

- external target: ≤ 1 mg/cm² (CH₂)_n P. E
 internal target: 10¹⁴/cm² hydrogen continuous accumulation and stacking
- -- charge exchange cross sections: from T. Stöhlker et al. (Phys. Rev. A 58 (1998) 2043)

luminosity gain at internal target depends on: Ø energy

- Ø atomic number
- Ø nuclear lifetime

limitations:

Ø low E and high Z: charge exchange Ø high E: nuclear lifetime

II. The EXL Detector Setup - Concept and Design Goals

Detection systems for:

- I Target recoils and gammas ($p,\alpha,n,\gamma...$)
- Forward ejectiles (p,n,γ)
- Beam-like heavy ions

Design goals

- I Universality: applicable to a wide class of reactions
- I High energy and angular resolution
- I Fully exclusive kinematical measurements
- I High luminosity (> 10^{28} cm⁻² s⁻¹)
- I Large solid angle acceptance
- UHV compatibility (in part)

The EXL Recoil Detector

The EXL Recoil and Gamma Array

Si DSSD δ DE, x, y 300 μ m thick, spatial resolution better than 500 μ m in x and y, ? E = 30 keV (FWHM)

Thin Si DSSD **ð** tracking <100 μ m thick, spatial resolution better than 100 μ m in x and y, ? E = 30 keV (FWHM)

Si(Li) ð E 9 mm thick, large area 100 x 100 mm², ? E = 50 keV (FWHM)

CsI crystalsðE, gHigh efficiency, high resolution,20 cm thick

The EXL Recoil and Gamma Array

Si DSSD \eth DE, x, y300 μ m thick, spatial resolutionbetter than 500 μ m in x and y,? E = 30 keV (FWHM)

Thin Si DSSD $\tilde{\mathbf{0}}$ tracking<100 μ m thick, spatial resolutionbetter than 100 μ m in x and y,? E = 30 keV (FWHM)

 Si(Li)
 ð E

 9 mm thick, large area
 100 x 100 mm²,

 ? E = 50 keV (FWHM)

CsI crystalsðE, gHigh efficiency, high resolution,20 cm thick

Specifications of the Silicon Detectors for EXL

Angular region	T _{lab} [deg]	Detector type	Active area [mm²]	Thickness [mm]	Distance from target [cm]	Pitch [mm]	Number of detectors	Number of channels
A	89 - 80	DSSD Si(Li)	87 x 87 87 x 87	0.3 9	59 60	0.1 -	20 20	34800 180
В	80 - 75	DSSD Si(Li) Si(Li) Si(Li)	50 x 87 50 x 87 50 x 87 50 x 87 50 x 87	0.3 9 9 9	50 52 54 56	0.1 - -	20 20 20 20	27400 180 180 180
С	75 - 45	DSSD DSSD	87 x 87 87 x 87	0.1 0.3	50 60	0.1 0.1	60 60	104400 34800
D	45 - 10	DSSD DSSD Si(Li)	87 x 87 87 x 87 87 x 87	0.1 0.3 9	49 59 60	0.1 0.1	60 80 80	104400 139200 720
E	170 - 120	DSSD Si(Li)	50 x 50 50 x 50	0.3 5	25 26	0.5 -	60 60	6000 240
E'	120 - 91	DSSD Si(Li)	87 x 87 87 x 87	0.3 5	59 60	0.1	60 60	104400 540
Total		DSSD Si(Li)					420 280	555400 2220

Specifications of the Silicon Detectors for EXL

- low threshold = 40 keV
 - $(\Rightarrow$ constraints on thickness of entrance windows)
- high energy resolution = 20 keV
- pitch size = 0.5 mm
- active area 65 X 65 mm²
- large dynamic range: 100 keV to 50 MeV
- readout of energy, time, PSA??
- self triggering
- moderate count rates
- UHV (HV) compatibility (partly)

Design Study of the Gamma-Calorimeter

The EXL Forward Ejectile Detector

Kinematically complete measurements:

- detection of forward light particles emitted from the projectile (momenta measured)
- excitation energy of projectile residue, momentum (angular) correlations

(Phase II)

- High-resolution TOF and position measurements
- Full solid angle (forward focus)
- Calorimeter: scintillator + iron converter (similar to LAND)

The EXL In-Ring Heavy-Ion Spectrometer

∨ Ion-optical mode for NESR as fragment spectrometer

∨ 3 heavy-ion detector stations:

- in front of first dipole magnet for 'reaction tagging' (main mode)
- inserted into dipole section for 'tracking' of fragments

• inserted into quadrupole section for 'imaging' properties of magnetic Spectrometer (limited acceptance)

Predicted Luminosities

Target: 10¹⁴ H atoms cm⁻²; beam losses included

Nucleus	production rate at S-FRS target	Lifetime including losses in	Luminosity [cm ⁻² s ⁻¹]	Luminosity [cm ⁻² s ⁻¹]	Luminosity [cm ⁻² s ⁻¹]
	[1/s]	NESR [s]			(preliminary)
¹¹ Be	2 x 10 ⁹	36	> 10 ²⁸	> 10 ²⁸	
⁴⁶ Ar	6 x 10 ⁸	20	> 10 ²⁸	> 10 ²⁸	8 x 10 ²⁶
⁵² Ca	4 x 10 ⁵	12	2 x 10 ²⁶	4 x 10 ²⁵	9 x 10 ²³
⁵⁵ Ni	8 x 10 ⁷	0.5	6 x 10 ²⁶	5 x 10 ²⁵	4 x 10 ¹⁰
⁵⁶ Ni	1 x 10 ⁹	3800	> 10 ²⁸	> 10 ²⁸	5 x 10 ²⁶
⁷² Ni	9 x 10 ⁶	4.1	2 x 10 ²⁷	3 x 10 ²⁶	2 x 10 ²³
¹⁰⁴ Sn	1 x 10 ⁶	51	3 x 10 ²⁷	6 x 10 ²⁶	3 x 10 ²⁵
¹³² S n	1 x 10 ⁸	93	> 10 ²⁸	> 10 ²⁸	1 x 10 ²⁷
¹³⁴ S n	8 x 10 ⁵	2.7	3 x 10 ²⁵	5 x 10 ²⁴	4 x 10 ²⁰
¹⁸⁷ Pb	1 x 10 ⁷	34	> 10 ²⁸	3 x 10 ²⁷	5 x 10 ²⁵

740 A.MeV 100 A.MeV

Options to be explored: Deceleration, Multi-charge state operation (*increase luminosity*)?

Expected Performance

Elastic proton scattering ¹³²Sn (Matter Distribution)

Skin and halos in heavy neutron-rich nuclei

High sensitivity of the method (simulation of experimental conditions as expected at the NESR with a luminosity of 10^{28} cm⁻² s⁻¹)

at present ESR: needs 500 days !!!

Inelastic alpha scattering on Sn isotopes (Giant Monopole Resonance)

Collective modes in asymmetric nuclei, nuclear matter compressibility

at present ESR: needs 10000 days !!!

III. R&D on the EXL Recoil Detector

<u>Aim:</u> determine spectroscopic properties: ? E, ? (dE), efficiency, PSD resolution of total energy reconstruction UHV capability

Detectors: 1st series of DSSDs from PTI St. Petersburg (8 sensors delivered April 2008/ September 2009) 2nd series of DSSD`s with larger size (65 x 65 mm²) (5 sensors delivered January 2010)

Tests:2008/2009: GSI:a sources2008: Edinburgh:a sourcesApril 2009: KVI Groningen:protons of 50 MeVJuly 2009: TU München:a particles E < 30 MeV</td>September 2009: GSI:protons of 100 and 150 MeVApril 2010: KVI Groningen:protons of 135 MeVJanuary 2011: TU Tübingen:protons of 1.5 MeV down to 70 keV

Si - Detectors: DSSD`s

sensors provided by PTI St. Petersburg (V. Eremin et al.)

Production – PTISt. Petersburg (Russia) Si wafer (300nm thick, 4")

Available DSSDs

pitch	\mathbf{P}^+ \mathbf{N}^+	No
300µm	16 x 16 (FP):	20
300µm	16 x 16 (P+):	20
300µm	64 x 16:	4
300µm	64 x 64:	4
100µm	256 x 16:	4
100µm	256 x 256:	4
	PIN:	30

Detector Construction at GSI

- Construction of prototype DSSDs at GSI: **16**x**16** (4), **64**x**64** (4) + **64**x**16** (4)
- Both types use FR-4 PCB with epoxy-glued DSSD chips
- Wedge bonded

Si - Detectors: DSSD`s

sensors provided by PTI St. Petersburg (V. Eremin et al.)

setup of working detectors (PCB-board, bonding, readout) at GSI \Rightarrow 9 detectors: 16X16, 64X16, 64X64 strips, d=300 μm

Status and Perspectives of R&D

Si - Detectors: DSSD`s

sensors provided by PTI St. Petersburg (V. Eremin et al.)

setup of working detectors (PCB-board, bonding, readout) at GSI \Rightarrow 9 detectors: 16X16, 64X16, 64X64 strips, d=300 μm

detector tests with a-source performed at GSI and Edinburgh \Rightarrow up to 128 channels read out, up to 99% working strips, ?E=16keV

front-rear correlation analysis ⇒ energy resolution and efficiency for p-side and n-side injection

 \Rightarrow results to be used as input for design of next generation detectors

Front-Rear Side Correlation Analysis

In-Beam Tests with the EXL Demonstrator

FirstDSSD - 3 x 3 cm², 64 x 64 strips, pitch 300 μ mSecond DSSD - 3 x 3 cm², 64 x 64 strips, pitch 300 μ mSiLi- 9 x 5 cm², 4 x 2 padsCsl- 3 x 3 crystals with the individual readout

The EXL Demonstrator

In-Beam Tests at KVI Groningen with 50 MeV Protons

20

10

40

50 60

30

p-side

Pulse-Shape Discrimination with DSSD's

test with p, d, ⁴He from ${}^{12}C + {}^{12}C @ 70 \text{ MeV}$ TU Munich

M. von Schmid et al. NIM A629 (2011)197

Strip & Interstrip

Strip (stopped a 's)

DSSD strip-strip events show PSD comparable with single PIN diodes

Response to very low energy recoil particles

experiment performed at the 1.5 MV Van de Graf accelerator at the Univ. Tübingen

- 1503keV protons scattered from C target (37µg/cm²)
- Spectrum shows strip #11 (p side)
- 818keV H₂ scattered from
 - C target (37µg/cm²), ~3.5µm Mylar degrader in front of DSSD
- Spectrum shows strip #11 (p side)

Pespectives: 2nd Series of DSSD`s from PTI St. Petersburg: 64 X 64 mm²

65 x 65 mm²

Specification:

Single-crystal silicon: 7 - 20 kOhm× cm Diode structure: p+ (strips) – i - n+ (strips), orthogonal, n+ - strip insulation, p+ implant Diode area: 65 x 65 mm² Diode topology: Strips on p+ side, 128 Strips on n+ side, 64 Diode thickness: 300 μm Operational reverse voltage limit: > 100 V

Impact from GSI tests: <u>Improved p-side layout:</u> •P-side inplantation depth reduced •Smaller contact stips at p-side •Interstrip gap reduced to 10 μm

2nd Series of DSSD`s from PTI St. Petersburg: 64 X 64 mm²

UHV Capability of the EXL Silicon Ball: Concept: using DSSD's as high vacuum barrier Differential pumping proposed to separate NESR vacuum m EXL instrumentation (cabling, FEE, other detectors) ,1x10⁻⁷mbar Space for other DSSDs, Si(Li), FEE and cabling DSSDs ESR ~1x10⁻¹⁰mbar

Inner shell of DSSDs on support frame forms (bakeable) vacuum barrier

UHV-Barrier DSSD Prototype Design

P-side: in UHV

N-side

21 x 21 mm² DSSD with 64x64(16) strips mounted into AIN PCB of 60 x 60 mm²

P-side towards UHV

N-side and spring-pin connectors at auxiliary vacuum

Cup springs

- Differential vacuum test using real DSSD as a vacuum barrier

 G orders of magnitude difference between low and UH vacuum in wide pressure region
- Vacuum of 1.2 * 10⁻¹⁰ mbar reached pumping limit of the station

Support Structure

Outside

and make it vacuum tight

Thread holes for rods to mount detectors

Inside

UHV capable Tagging Detector

- Forward detector before the first dipole, detection of beam like reaction products in coincidence with recoils.
- 6 PIN diodes (1 x 1 cm²) on AIN PCB, directly in the UHV
- Small dead edge, could be very close to the beam
- Baked at 250° C, passed vacuum Test.

IV. Feasibility Studies for EXL and First Experiments at the ESR

experimental conditions:

- 136 Xe beam, E = 350 MeV/u
- 10^9 circulating ions in ring \Rightarrow L \approx 6 10^{27} cm⁻² sec⁻¹

Si-Strip Detector for Applications under UHV Conditions

design:

- active area: 40 x 40 mm²
- thickness: 1 mm
- 40 strips (pitch: 1mm) connected for readout in groups of 8
- bakeable to 250° Celsius
- cables: home made
- performance:
 - energy resolution 35 keV FWHM
 - low outgasing rate

Selected Results

performance of luminosity monitors:

Si strip detector: MWPC: Photomultiplier: elastic scattering atomic charge exchange light

absolute luminosity measured with Si Strip Recoil Detector deduced luminosity $\Rightarrow L = (6\pm 2) \cdot 10^{27} \text{ cm}^{-2} \text{ sec}^{-1}$

H. Moeini and S. Ilieva et al., NIM A634 (2011)77

<u>Recoil Detector in UHV:</u> Differential ¹³⁶Xe(p,p) cross section

data are consistent with nuclear matter radius: $R_m = 4.89$ (10) fm (expected from data on the charge radius)

In-Ring Detectors: Identification of reaction channels

identified reaction channels : ¹³⁶Xe(p, pn)¹³⁵Xe ¹³⁶Xe(p, 2pxn)^{132,133}I

Next Step: Accepted Proposal for Feasibility Studies and First Experiments with RIB`s at the ESR

(p,p), (a,a`), (³He,t) reactions with ⁵⁸Ni and ⁵⁶Ni beams

reactions with ⁵⁸Ni:

proof of principles and feasibility studies:

- background conditions in the environment of an internal target
 - low energy threshold
- pulse shape analysis
- target extension and density

performance of in-ring detection system reactions with ⁵⁶Ni:

⁵⁶Ni: doubly magic, important for nucl. astrophysics:

- (p,p) reactions: nuclear matter distr.
- I (a,a`) reactions: giant resonances ISGMR, IVGDR, parameters of the EOS
- I (³He,t) reactions: Gamow-Teller matrix elements, important for astrophys.

<u>after ESR upgrade:</u>

steps further away from stability

New Detector Chamber at the ESR

UHV capable Recoil Detectors

Assembly of the EXL's ESR Chamber

M. Lindemulder, KVI

DSSD-SiLi-SiLi telescope

R. Borger¹, T. Davinson², P. Egelhof³, V. Eremin⁴, S. Ilieva³
N. Kalantar¹, Y. Ke³, H. Kollmus³, T. Kröll⁵, X. C. Le³,
M. Lindemulder¹, M. Mutterer³, C. Rigollet¹, M. von Schmid⁵, B. Streicher^{1,3} P. Woods²

KVI Groningen
 Univ. Edinburgh
 GSI Darmstadt
 PTI St. Petersburg
 TU Darmstadt

Feasibility Demonstration at the Present ESR Facility

F. Aksouh, K. Beckert, P. Beller, K. Boretzky, A. Chatillon,
A. Corsi, P. Egelhof, H. Emling, G. Ickert, S. Ilieva, J. Jourdan,
N. Kalantar, O. Kiselev, C. Kozhuharov, T. Le Bleis, X.C. Le,
Y. Litvinov, K. Mahata, J. P. Meier, H. Moeini, F. Nolden,
S. Pascalis, U. Popp, D. Rohe, H. Simon, M. Steck, T. Stöhlker,
H. Weick, D. Werthmüller, A. Zalite
and the EXL-collaboration

Ges ells chaft für Schwerionenfors chung, Darms tadt, Germany Univers ität Bas el, Bas el, Switzerland Johannes Gutenberg Universität Mainz, Mainz, Germany KVI, Univers ity of Groningen, Groningen, The Netherlands University of Liverpool, Liverpool, United Kingdom

Univ. São Paulo

TRIUMF Vancouver

IPN Ors ay, CEA Saclay

GSI Darms tadt, TU Darms tadt, Univ. Frankfurt, FZ Jülich, Univ. Mainz, Univ. Munich

INR Debrecen

SINP Kolkata

KVI Groningen

INFN/Univ. Milano

Univ. Os aka

JINR Dubna, Univ. St Peters burg, Mos cow

CSIC Madrid, Univ. Madrid

Univ. Lund, Mid Sweden Univ., TSL Upps ala

Univ. Basel

Univ. Birmingham, CLRC Daresbury, Univ. Surrey, Univ. York, Univ. Liverpool

The EXL Collaboration

Bas el, Switzerland, Universität Bas el - K. Hencken, B. Krusche, T. Rauscher, F. Thielemann Birmingham, United Kingdom, University of Birmingham - M. Freer Dares bury, United Kingdom, CLRC Dares bury Laboratory - P. Coleman-Smith, I. Lazarus, R. Lemmon, S.Letts, V. Pucknell Darms tadt, Germany, Ges ells chaft für Schwerionenforschung - T. Aumann, F. Becker, K. Beckert, K. Boretzky, A. Dolinski, P. Egelhof, H. Emling, H. Feldmeier, B. Franczak, H. Geissel, J. Gerl, S. Ilieva, C. Kozhuharov, Y. Litvinov, T. Neff, F. Nolden, C. Peschke, U. Popp, H. Reich-Sprenger, H. Simon, M. Steck, T. Stöhlker, K.Sümmerer, S. Typel, H. Weick, M. Winkler Darms tadt, Germany, Technische Universität Darms tadt - G. Schrieder Debrecen, Hungary, Institute of Nuclear Research (ATOMKI) - A. Algora, M. Csátlos, Z. Gáski, J. Gulvás, M. Hunvadi, A. Krasznahorkay Dubna, Russia, Joint Institute of Nuclear Research - A.G. Artukh, A. Fomichev, M. Golovkov, S.A. Klygin, G. A. Kononenko, S. Krupko, A. Rodin, Yu.M. Sereda, S. Sidorchuk, E. A. Shevchik, Yu.G. Teterev, A.N. Vorontsov Frankfurt, Germany, Universität Frankfurt - R. Dörner, R. Grisenti, J. Stroth Gatchina, Russia, St. Petersburg Nuclear Physics Institute and St. Petersburg State University - V. Ivanov, A. Khanzadeev, E. Rostchin, O. Tarasenkova, Y. Zalite Göteborg, Sweden, Chalmers Institute - B. Jonson, T. Nilsson, G. Nyman Groningen, KVI The Netherlands - M. N. Harakeh, N. Kalantar-Navestanaki, H. Moeini, C. Rigollet, H. Wörtche Guildford, United Kingdom, University of Surrey - J. Al-Khalili, W. Catford, R. Johnson, P. Stevenson, I. Thompson Jülich, Germany, Institut für Kernphysik, Forschungszentrum Jülich - D. Grzonka, T. Krings, D. Protic, F. Rathmann Kolkata, India, Saha Institute of Nuclear Physics - S. Bhattacharya, U. Datta Pramanik Liverpool, United Kingdom, University of Liverpool - M. Chartier, J. Cresswell, B. Fernandez Dominguez, J. Thornhill Lund, Sweden, Lund University - V. Avdeichikov, L. Carlén, P. Gobulev, B. Jakobsson Madrid, Spain, CSIC, Instituto de Estructura de la Materia - E. Garrido, O. Moreno, P. Sarriguren, J. R. Vignote, C. Martínez-Pérez, R. Alvarez Rodriguez, C. Fernandez Ramirez Madrid, Spain, Universidad Complutense - L. Fraile Prieto, J. López Herraiz, E. Moya de Guerra, J. Udias-Moinelo Mainz, Germany, Johannes Gutenberg Universität - O. Kiselev, J.V. Kratz Milan, Italy, Universitá da Milano and INFN - A. Bracco, P.F. Bortignon, G. Coló, A. Zalite Moscow, Russia, Russian Research Centre, Kurchatov Institute - L. Chulkov Mumbai, India, Bhabha Atomic Research Center - S. Kailas, A. Shrivastava Munich, Germany, Technische Universität München - M. Böhmer, T. Faestermann, R. Gernhäuser, P. Kienle, R. Krücken, L. Maier, K. Suzuki Orsay, France, Institut de Physique Nucléaire - D. Beaumel, Y. Blumenfeld, E. Khan, J. Pevre, J. Pouthas, J.A. Scarpaci, F. Skaza, T. Zerguerras Osaka, Japan, Osaka University - Y. Fujita São Paulo, Brasil, Universidade de São Paulo - A. Lépine-Szily St. Peters burg, Russia, V. G. Khlopin Radium Institute - Y. Murin St. Peters burg, Russia, loffe Physico-Technical Institute (PTI) – V. Eremin, Y. Tuboltcev, E. Verbitskaya Sunds vall, Sweden, Mid Sweden University - G. Thungström Tehran, Iran, University of Tehran - M. Mahjour-Shafiei Uppsala, Sweden, The Svedberg Laboratory - C. Ekström, L. Westerberg Vancouver, Canada, TRIUMF - R. Kanungo

- The Future Facility NUSTAR@FAIR will allow to reach unexplored regions in the chart of nuclei, where new and exciting phenomena are expected.
- I The EXL setup is designed as universal detection system providing high resolution and large solid angle coverage for measurements at low momentum transfer.
- I The use of stored cooled radioactive beams within the EXL project will have considerable advantage over external target experiments in many cases.
- I The realization of the UHV compatible Si ball is most challenging.
- I The status of R&D and Feasibility Studies is very prom \Rightarrow the major technical problems are solved.
- EXL will allow to use a world wide unique experimental technique.
- A number of important physics questions can be only adressed by EXL.

R&D on Internal Target for EXL

new target option: cryogenic droplet targets (R.Grisenti et al., Frankfurt)

as compared to conventional gas-jet target: (d = 10^{14} cm⁻², s = 5 mm): \Rightarrow potentially higher density and smaller target extension

first successfull tests at the ESR performed

 \Rightarrow results are promising d = 10¹⁴ cm⁻² reached for H and He! but dramatic pressure increase under ion bombardment

 \Rightarrow target extension: s ~ 7 mm, expected for NESR: s ~ 1 mm

The New Recoil Detector Chamber at the ESR

Region	θ_{Lab}^{*}	θ Flange axis	Covered θ range	Flange size in mm
А	$90^{\circ} - 80^{\circ}$	83°	95° - 73°	Ø250
В	$80^\circ - 75^\circ$	83°	95° - 73°	Ø250
С	$75^\circ - 45^\circ$	60°	71° - 52°	Ø 250
D	$45^\circ - 10^\circ$	0°	28° - 18°	200x250
E'	120° –91°	109°	98° - 118°	Ø250
L		180°	136,5° – 43,5° **)	200x250

*) according to the angular regions A – E' defined in the Technical Proposal

Interaction Chamber Part (IC)

EXL Electronics

Detectors-560000 channels DSSD and SiLi

ASIC cards- approx 17500 ASICs on 1750 cards ADCs on 219 cards (32 channels/ASIC)

ADC cards- 1750 (320 channels/ADC)

Correlation Analysis Results

Mechanical Construction

- Base frame machined from CF160 flange
- Top frame from stainless steal has groove that presses on PCB and mounts for connectors
- Aluminium wires as a vacuum seal, used on both sides of the AlN PCB

 $R(int) = I_0 X s (nuclear reactions) / s (atomic charge exchange)$ $R(ext) = I_0 X s (nuclear reactions) X N(target)$

 \Rightarrow R(int) / R(ext) = 1/ (s(atomic charge exchange) X N(target))

PCB Design for 65 x 65 mm² DSSD`s

- -- P-side: 128 strips
- -- N-side: 64 strips

AlN PCB lapped and polished: Roughness < 0.5 μm Parallelity < 50 μm

Production: 2010

? DSSD

- ? ceramic PCB
- ? copper gasket

DSSD: 64 x 64 strips, 21 x 21 mm², 300µm

mounted on ceramic PCB, with low-outgasing epoxy.

All components bakeable to 200 °C

Differential Vacuum Test

Rest-gas analysis favourable

DSSD as UHV – HV vacuum barrier works fine

Spectral response unchanged after <u>three</u> baking cycles (to 220 °)