

Rare-RI Ring Workshop, RIKEN

"High-Precision Mass Measurements in Penning Traps and Storage Rings"

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Klaus Blaum November 10, 2011

G S]

Klaus.blaum@mpi-hd.mpg.de

IAX-PLANCE CERELINGHAFT

Outline

Principle of storage ring and Penning trap mass spectrometry

Setup and measurement procedure

Precision measurements of nuclear masses and their applications

Storage and cooling techniques

particles at nearly rest in space

relativistic particles

* ion cooling * long storage times
* single-ion sensitivity * high accuracy

Single ion sensitivity

aax Planck Instituti for Nuclear Physics

Why measuring atomic masses?

Atomic and nuclear binding energies reflect all forces acting in the atom/nucleus.

Sources: Accelerator or reactor based radioactive beam facilities and electron beam ion traps. CERN IMP/GSI MPIK TRIGA

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

.1]]] |||1'

Penning trap mass spectrometers worldwide

In operation since 1989 1993 1999 2004 2009

(rest under construction)

Storage rings for MS

Storage ring mass spectrometry

Schottky Mass Spectrometry

Isochronous Mass Spectrometry

B. Franzke, H. Geissel & G. Münzenberg, Mass Spectrometry Reviews 27 (2008) 428

Principle of Penning trap mass spectrometry

m = 100 u B = 6 T $\Rightarrow f \approx 1 \text{kHz}$ $f_{+} \approx 1 \text{MHz}$

TOF cyclotron resonance detection

MAX PLANCK INSTITUT FOR NUCLEAR PHYSIC

TRIGA-SPEC: TRIGA-LASER + TRIGA-TRAP

steady 100 kW, pulsed 250 MW, neutron flux 1.8x10¹¹ / cm²s Nucl. Instrum. Meth. A 594, 162 (2008)

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

Nuclear structure studies

 $S_{p} = B(Z,N) - B(Z-1,N)$

 $S_{2n} = B(Z,N) - B(Z,N-2)$

SHIPTRAP: First direct mass measurement beyond the proton dripline.

OR

C. Rauth *et al.*, Phys. Rev. Lett. 100, 012501 (2008) M. Dworschak *et al.*, Phys. Rev. Lett. 100, 072501 (2008) W. Geithner *et al.*, Phys. Rev. Lett. 101, 252502 (2008) J. Hakala *et al.*, Phys. Rev. Lett. 101, 052502 (2008)

CPT/ISOLTRAP/JYFLTRAP/LEBIT/TITAN: Investigation of shell closures, halos, ...

B. Cakirli et al., Phys. Rev. Lett. 102, 082501 (2009)

- D. Neidherr et al., Phys. Rev. Lett. 102, 112501 (2009)
- J.S.E. Wieslander et al., Phys. Rev. Lett. 103, 122501 (2009)
- S. Naimi et al., Phys. Rev. Lett. 105, 032502 (2010)

Experimental proton-neutron interaction

MAX-PLANCE-CESELL-SCHAFT

ESR (GSI)

For even-even nuclei

 $\delta V_{pn}(Z,N) = \frac{1}{4} [\{B(Z,N) - B(Z,N-2)\} - \{B(Z-2,N) - B(Z-2,N-2)\}]$

²⁰⁸Hg: Phys. Rev. Lett. 102, 122503 (2009)

Making gold in nature

D. Rodríguez *et al.*, Phys. Rev. Lett. 93, 161104 (2004) S. Baruah *et al.*, Phys. Rev. Lett. 101, 262501 (2008) X.L. Tu *et al*., Phys. Rev. Lett. 106, 112501 (2011) E. Haettner *et al*., Phys. Rev. Lett. 106, 122501 (2011)

Direct mass measurements on No and Lr

MAX PLANCK INSTITUTH FOR NUCLEAR PHYSICS

Neutrino-less double EC (0v2EC)

Is the neutrino a Majorana or Dirac particle?

2v2EC (T_{1/2}>10²⁴y) $0v2EC(T_{1/2}>10^{30}y)$ $\frac{1}{T_{1/2}} = C \times m_{\nu}^2 \times |M|^2 \times |\Psi_{1e}|^2 \times |\Psi_{2e}|^2 \times \frac{\Gamma}{(Q - B_{2h} - E_{\gamma})^2 + \frac{1}{4}\Gamma^2}$ 0v2EC might be resonantly enhanced ($T_{1/2} \sim 10^{25}$ y) (Z,A) capture of excited electron shell two orbital electrons Contribution of Penning traps: $\mathsf{B}_{^{2h}}$ Search for nuclides with $\Delta = (Q_{ee} - B_{2h} - E_{\gamma}) < 1 \text{ keV}$ $\mathsf{Q}_{_{\mathrm{EE}}}$ (Z-2,A)^{*} by measurements of Q_{cc} –values ≩ Eγ

at ~100 eV accuracy level

..... (Z-2,A)

Resonance enhancement factors

107, 152501 (2011)

AX-PLANCE CEBELL SCHAF

A breakthrough: Octupolar excitation

At least 20-fold improvement in resolving power!

Non-destructive ion detection

AX-FLANCE-CEBELLBCHAFT

THe-TRAP for KATRIN

A high-precision Q(3T-3He)-value measurement

 ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + e^{-} + \overline{\nu} \quad Q_{lit} = 18589.8 (1.2) \text{ eV}$

We aim for: $\delta Q(^{3}T \rightarrow ^{3}He) = 20 \text{ meV}$ $\delta m/m = 7 \cdot 10^{-12}$

 $\Delta T < 0.05$ K/d at 24°C $\Delta B/B < 10$ ppt / h $\Delta x \le 0.1$ µm

First ¹²C⁴⁺/¹⁶O⁶⁺ mass ratio measurement at $\delta m/m_{stat} = 4.10^{-11}$ performed.

Future ring/trap facilities at FAIR

MAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

Summary

Breathtaking results in precision mass spectrometry with stored and cooled exotic ions have been achieved!

- Accurate masses have been obtained for nuclear structure studies and reliable nucleosynthesis calculations.
- First direct mass measurements above uranium bridge the gap to the island of stability.
- Discovery of a suitable candidate for 0v2EC search.
- Development of novel and unique storage devices.
 - ... and many more!

Thanks a lot for the invitation and your attention!

Email: klaus.blaum@mpi-hd.mpg.de WWW: www.mpi-hd.mpg.de/blaum/

