International Workshop on Physics of Rare-RI Ring RIKEN, November 10–12, 2011

R-Process in Gamma-Ray Bursts

 ★ Supernovae & Gamma-ray Bursts are the most energetic promoters of the Galactic evolution.
 ★ They explosively create many atomic nuclides.
 ★ R-PROCESS ELEMENTS ?

Taka KAJINO

National Astronomical Observatory (NAO) Department of Astronomy, University of Tokyo (UT)

PURPOSE

To elucidate the Power of Interdisciplinary Research Collaboration and Synergy among Nuclear Physics-Astronomy-Astrophysics to understand the Galactic Evolution and the the R-process.

OUTLINE

- Astronomical Observation of R-Process Elements
- Nuclear Physics of the R-Process
- Neutrino Pair-heated Collapsar Model for the GRBs for the R-Process
- Recent RIKEN Data of β-Half Lives and R-Process
 next talk by Shunji Nishimura

UNIVERSALITY OF R-ELEMENT ABUNDANCES

Sneden et al. (1996 – 2005)

Honda, Aoki, et al. (SUBARU-HDS), 2004, ApJS 152, 113.

Sneden, Cowan, Gallino, ARAA 46 (2008) 241.

Magic Number and Neutron-Capture Processes From Text Book (Kubono & Kajino)

(a) Neutrino-Driven Wind

Neutrino-driven Wind Model explains UNIVERSALITY !

Otsuki, Tagoshi, Kajino & Wanajo 2000, ApJ 533, 424 Wanajo, Kajino, Mathews & Otsuki 2001, ApJ 554, 578

t = 0

Neutrino-driven wind forms right after SN core collapse.

 $\mathbf{n} + \boldsymbol{\alpha} + \mathbf{p}$

t = 18 ms Seeds form. Exotic neutron-rich; ⁷⁸Ni t = 568 ms – 1 s Heavy r-elements form.

Nucleosynthesis proceeds: $NSE \rightarrow \alpha$ -process \rightarrow r-process

New Waiting Points in Light-Mass Nuclei

Candidate Astrophysical Sites for R-Process

Supernova R-Process

from Ishiyama & Miyatake (2009)

Candidate	Physical Conditions			Expected	
	S	Ye	$M_r/(SN)$	Event Rate	Evaluation
(a) v-Driven Wind	~ 100	0.45	10 ⁻⁵ M⊙	10 ⁻² /yr/galaxy*	O Solar-system r ! × No explosion model
(b) Binary Neutron Star Merger	~ 1	0.1	10 ⁻² M⊙	< 10 ⁻⁵	× Metal poor☆?
(c) MHD Jet	~ 10	0.1~0.4	10 ⁻³ M⊙	< 10 ⁻⁶	△ Explode, but special condition required?

Solar-System r-abundance = $10^3 M_{\odot}$

* Observed SN frequency

 $10^{-5}M_{\odot} \times 10^{-2} \times 10^{10} = 10^{3}M_{\odot}$ Cosmic age

There is another candidate of Gamma-ray Bursts !

GRBs are cosmological activities at high redshifts (0< z <6.6) in the early Universe.

GRB - Hypernova Connection

Gamma-Ray Bursts (GRBs)

cf. SNe: E~10⁵¹erg

- Some GRBs, associated with Hypernovae (E~10⁵²erg)
- We expect completely different nucleosynthesis.

Spectral evolution

"GRB980425 / SN1998bw" /"GRB030329 / SN2003dh" - Η α, β, γ, δ - Ηε α, Ηε Ι - Ν ΙΙ - Ο ΙΙ, ΙΙΙ - Νε ΙΙΙ - Si ΙΙ

 GRB is an extra-galactic activity at high redshifts 0 < z < 6.6.

- Our Milky Way (z=0) is not a special Galaxy among many other galaxies.
- GRBs should have occurred in the early epoch of our Milky Way, too.

- GRB (1st Hypernova) affected early generation metal-poor Pop. II stars.

Gamma-Ray Bursts : 2D Hydrodynamic Model Central Engine = Collapsar

Harikae et al., ApJ 704 (2009), 304; ApJ 720 (2010), 614; ApJ 713 (2010), 304.

$$\frac{dq_{\nu\bar{\nu}}^{+}(r)}{dtdV} = \iint f_{\nu}(p_{\nu}, r)f_{\bar{\nu}}(p_{\bar{\nu}}, r)\sigma|v_{\nu} - v_{\bar{\nu}}|(\epsilon_{\nu} + \epsilon_{\bar{\nu}})d^{3}p_{\nu}d^{3}p_{\bar{\nu}}d^{3}p$$

Neutrino Pair-Annihilation

Ray-tracing neutrino pair-annihilation when time scale of neutrino heating is shorter than dynamical (free-fall) time.

Neutrino Pair-Heating Wind —> High Entropy

Lorentz Factor

Properties of Wind Outflow

Harikae et al., ApJ 704 (2009), 304; ApJ 720 (2010), 614; ApJ 713 (2010), 304, Nakamura Sato, Kajino and Mathews (2011), ApJ, submitted.

At the edge of Iron-Core ~3000km

• $\rho \sim 10^3 \text{ g/cm}^3$ (High density)

- •S/k ~ 100-1000 (High entropy)
- $\cdot Y_e < 0.5$ (Neutron rich)
- $\Gamma > 2.0$ (Relativistic flow)

Kinetic Energy Production dE/dt > 4 × 10⁴⁹ erg/s

Possible GRB candidate !

R-Process !? 1,215 trajectories out of ~ 4,000 are the ejected outflows!

R-process in Pair v-Heated Collapsar Model for GRB

K. Nakamura, S. Sato, S. Harikae, T. Kajino and G.J. Mathews (2011), submitted to ApJ.

Neutron-rich condition for successful r-process:

relative abundance

RIKEN-RIBF New Ring Cyclotron (2007)

Magic Number and Neutron-Capture Processes From Text Book (Kubono & Kajino)

Measured β-half lives @ RIKEN slightly improves the DEFICIENCY around A = 110-120.

Q-values (masses)? Astrophys. conditions ?

Nishimura, Nishimura, Kajino, Suzuki & Mathews (2011), in preparation. MHD-Jet Model

Identified Important Reaction Flow Paths

Liu's talk

⁷Li(n,γ)⁸Li(α,n)¹¹B

LaCognata et al., ApJL (2009), in press.

Discrepancy Inclusive Data >> Exclusive Sum

NON-LINEAR Effect of " α -process—r-process" Seque

(1) $\alpha(\alpha n, \gamma)^9 Be$ (2) (3) $\alpha(t, \gamma)^7 Li(n, \gamma)^8 Li(\alpha, n)^{11} B$ X 2 artificial change

Oscillation (MSW) Effect on Supernova v-Process

SN II: Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101. SNIc + II: Nakamura, Yoshida, Shigeyama, Kajino, ApJL 718 (2010), L137.

Our Theoretical Prediction

⁷Li/¹¹B-Ratio

Yoshida, Kajino et al . 2005, PRL94, 231101; 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448.

Allowed region of $sin^2 2\theta_{13}$ for δ_{CP}

Confidence level intervals for $\sin^2 2\vartheta_{13} \vee s \delta_{CP}$

Feldman-Cousins method was used for constructing confidence interval

Mass hierarchy is still unknown

MINOS P. Adamson, et al.

P. Adamson, et al arXiv:1108.0015

Assuming: $\delta=0, \theta_{23} = \pi/4$ normal (inverted) hierarchy $\sin^2(2\theta_{13}) < 0.12(0.19)$ 90% CL $\sin^2(2\theta_{13}) = 0.04(0.08)$ Best Fit We exclude $\sin^2 2\theta_{13} = 0$ at 89% CL

Feldman-Cousins contours

Uncertainties in the other oscillation parameters are included

v-Nucleus interaction cross section?

Haxton's SM cal. (Woosley et al. ApJ. 356 (1990), 272)

Suzuki's new SM cal. with NEW Hamiltonian Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307, ++ Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003) → SFO

¹²C: SFO Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei.

- μ-moments of p-shell nuclei
- GT strength for ${}^{12}C \rightarrow {}^{12}N$, ${}^{14}C \rightarrow {}^{14}N$, etc.
- DAR (v,v'), (v,e-) cross sections

QRPA: Cheoun, Ha, Lee, Kim, So & Kajino, PRC81 (2010), 028501

¹⁸¹Ta_g(stable), ¹⁸⁰Ta_g(unstable, $\tau_{1/2} = 8h$), ¹⁸⁰Ta^m(isomer, $\tau_{1/2} > 10^{15}y$)

¹⁸⁰Ta is the rarest isotope in the Solar-Systerm and even in the Universe!

Where was ¹⁸⁰Ta synthesized ?

¹⁸⁰Ta-genesis needs Quantum Phys. + SN Hydro-dyn.

Solar-¹⁸⁰Ta is all "**ISOMER**" with $T_{1/2} > 10^{15}$ y!

- Long lived ¹⁸⁰Ta^m is excited in hot SN-photon bath.
- Intermediate states are depopulated to the ground state, which decays in 8 hours.

Result from v-Nucleosynthesis

T. Hayakawa, T. Kajino, S. Chiba, and G.J. Mathews, Phys. Rev. C81 (2010), 052801®

About 40% ¹⁸⁰Ta^m survives in supernova explosion.

Then, both ¹³⁸La and ¹⁸⁰Ta abundances can be consistently reproduced by the CC-int. of v_e and $\overline{v_e}$ of

v-¹⁸⁰Ta,¹³⁸La,⁹²Nb,⁹⁸Tc,¹²C,⁴He... X-sections calculated in Quasi-particle Random Phase Approximation

Cheoun, Ha, Hayakawa, Kajino & Chiba, PRC82 (2010), 035504; Cheoun, Ha, Kim, & Kajino, J. Phys. 37 (2010) 055101; Cheoun, Ha & Kajino, PRC 83 (2011), 028801

GT and Spin-Multipole transitions !

Why are all amino acids on the Earth left-handed?

Chitrality, earth/solar origin or universal in cosmos?

- ★ Neutrinos are all left-handed!
- ★ Supernovae with strongly magnetized neutron star or BH emit intensive flux of neutrinos over 10¹⁰ yrs!
- ★ SN ejecta including ¹⁴N interact with neutrino under strong magnetic field!
- ★ Neutrino-¹⁴N coupling is asymmetric & chiral selective!

Boyd, Kajino, & Onaka (Astrobiology 10 (2010), 561-568) suggest L-handed chirality of amino acids is UNIVERSAL !

SUMMARTY

• We constructed a COLLAPSAR Model for the central engines of the GAMMA-RAY BURSTS (GRBs), and applied to nucleosynthesis.

We succeeded in reproducing observed abundances of the R-PROCESS ELEMENTS that satisfy the UNIVERSALITY.

Much effort should launch in both NUCLEAR PHYSICS and ASTROPHJYSICS in order to understand the origin of the r-process elements.

Nuclear Masses (Q-values), β-decay lives,
 (n, γ) & (α, n) rates on intermediate-to-heavy nuclei,
 p,n,α-induced reactions on light nuclei

 \star Models for Astrophysical sites