Overview of Rare-RI Ring

and

Mass measurements

A. Ozawa (University of Tsukuba)

Contents

- Overview of Rare-RI Ring
 - Present mass measurements (ion-trap/storage ring)
 - Principle of mass measurements
 - Present floor arrangement
 - Individual injection (fast kicker magnets)
 - Cyclotron-like storage ring (isochronous field)
 - Other R&D issues (TOF detector etc.)
- Mass measurements in Rare-RI Ring
 - Measurement procedure
 - Case for ⁷⁸Ni
- Summary

Mass measurements in Penning Trap

Cyclotron frequency: ω_C Magnetron frequency

m

0 0.5 1 cm

Advantage: **High resolution (<10⁻⁶)** <u>Disadvantage</u>: Low energy RI beams **Long measurement time (~1 s)** Specified isotopes

Mass measurements in ESR/GSI

Overview of Rare-RI Ring

Principle of mass measurements

$$f_{c} = \frac{1}{2\pi} \frac{qB}{m} : \text{cyclotron frequency}$$
Based on

$$T_{0} = 2\pi \frac{m_{0}}{q} \frac{1}{B} \gamma_{0} = 2\pi \frac{m_{0}}{q} \frac{1}{B_{0}}$$
Isochronous optics For

$$m_{1}/q = m_{0}/q + \Delta(m_{0}/q)$$

Isochronism is no longer fulfilled.

$$\frac{m_1}{q} = \left(\frac{m_0}{q}\right) \frac{T_1}{T_0} \frac{\gamma_0}{\gamma_1} = \left(\frac{m_0}{q}\right) \frac{T_1}{T_0} \sqrt{\frac{1 - \beta_1^2}{1 - \left(\frac{T_1}{T_0}\beta_1\right)^2}}$$

Measurements of β is indispensable.

 $\delta\beta/\beta\sim 10^{-4}$ $\delta(m_1/q)/(m_1/q)\sim 10^{-5}$ for 10% m/q difference

Present floor arrangement @ RIBF B2F

Beam-triggered individual injection

By R&D in 2010

275 ns is possible!

Response time of kicker power supply should make less than 290ns.

Talk by A. Tokuchi. \mathbf{N} 80 kicker Flight time is 940ns for 200 A MeV Rare-RI from F3 to kicker magnet (161.5m) **Delay from thyratron out** to flat-top center : 230ns 370ns (105m) 50ns

Cyclotron-like storage ring

- Outer 2 sector magnets are modified to achieve a precise isochronous field.

Design of cyclotron-like storage ring

Talk by Y.Yamaguchi.

First order isochronous field can be achieved!

Basic characteristics of cyclotron-like

storage ring

- Beam energy :	200 A MeV
- Lorentz factor γ :	1.2147
- Circumference :	60.3507 m
- Momentum acceptance :	1.0%
- Harmonics :	13
 Revolution frequency : Revolution time : Normalised gradient k1 : 	2.82 MHz 355 ns 0.074 m ⁻²
transition $\gamma_{tr} = 1.2146 = \gamma$ at $dp/p=0$ - Betatron tune : $Q_x = 1.22$, $Q_y = 0.88$ - Max. β fuction : $\beta_x = 8.1 \text{ m}$, $\beta_y = 12.5 \text{ m}$ - Dispersion of straight part : 66.91 mm/%	

Beam optics in injection

- Optimize the injection trajectory by 3rd-order calculation

Adjustments of isochronous magnetic field

 Measure the revolution frequency of primary beam by schottky pick-up system

R&D for Cluster ion-source as the calibrator

Principle and methods

- Rigidity of atomic cluster ($Cu_{n=800}$) can be matched to Rare-RI in the storage ring.
- By the cluster we can measure the flight length in the storage ring.
- If we measure the flight length with 10⁻⁶, we can determine the magnetic

field with 10⁻⁶ in the storage ring.

Probable first experiment?

R&D for TOF detectors

Mass measurements in Rare-RI Ring

Possible measurement procedure (case for ⁷⁸Ni) :

- 1) Tuning for isochronous field
- We use primary beam: ⁷⁸Kr²⁸⁺ with 200 *A* MeV, that can be accelerated in RIBF.

Schottky probe and rf-cavity are needed.

⁷⁸Kr²⁸⁺ can be used for reference of mass.

- 2) We change primary beam from 78 Kr²⁸⁺ to 238 U.
- ⁷⁸Ni²⁸⁺ is tuned in BigRIPS to the ring.
- 3) We measure ToF (~2000 turns, ~0.7ms) by ToF detectors.
- 4) Mass of the nuclei around ⁷⁸Ni can also be measured.
- β can be used as corrections.

RIBF allows us to access R-process.

<u>Yield estimation of ⁷⁸Ni in Rare-RI ring</u>: ~5×10⁻³ cps/pnA in BigRIPS (Full acceptance)

	Reduction factor from BigRIPS
Energy: ~290 <i>A</i> MeV→200 <i>A</i> MeV	~0.9
Momentum acceptance $6\% \rightarrow 1\%$	1/6
Angular acceptance 80πmm mrad→~20πmm mrad	~1/16
Transmission eff. at injection	~0.8
Total	~0.0075

 4×10^{-5} cps/pnA $\rightarrow \sim 3$ events/day/pnA in Rare-RI ring

Still feasible!

Summary

- Rare-RI Ring consists of long injection line, fast kicker system and cyclotron-like storage ring (isochronous ring).
- Fast kicker magnet allows to inject 200 *A* MeV Rare-RI beam by individual injection.
- Isochronous field can be made by fixed laminated plates (1st order, ~10⁻⁴) and adjustable trim-coils (2nd order, ~10⁻⁶).
- In the storage ring, $\delta T/T < 10^{-6}$ can be achieved with large emittance (~30 π mm mrad) and large momentum spread (±0.5%).
- Schottky probe and RF-cavity are needed for tuning of trim coils by primary beam.
- Mass measurements of ⁷⁸Ni is feasible in Rare-RI Ring.

Rare-RI Ring Collaboration

A.Ozawa, Y. Abe, I.Arai, Y.Ito, T.Moriguchi, D.Nagae (Univ. of Tsukuba) T.Fujinawa, N.Fukunishi, A.Goto, H.Hasebe, T.Ohnishi, H.Sakurai, H. Suzuki, M.Wakasugi, Y.Yamaguchi, Y.Yano (RIKEN) **T.Suzuki**, T.Yamaguchi (Saitama Univ.) T.Kikuchi, A.Tokuchi (Nagaoka Univ. of Technology) **T.Ohtsubo** (Niigata Univ.) Y.Yasuda (RCNP, Osaka Univ.) S.Kubono (CNS, Univ. Tokyo)