EIC-ASIA ZDC ECAL Test Beam Analysis

Wen-Chen Chang, Kai-Yu Cheng, Tatsuya Chujo, Yuji Goto, Chia-Yu Hsieh, Motoi Inaba, Subaru Ito, Kentaro Kawade, Yongsun Kim, ChiaMing Kuo, Chih-Hsun Lin, Po-Ju Lin, Rong-Shyang Lu, Jen-Chieh Peng

Review

Beam Test on 2025 Feb.

Detector	Crystal	Sensor	One crystal	Length	Array	Note	
ZDC ECal 2 nd	LYSO	APD	1cm*1cm 6.6cm (6X0) 8x8		8v8	Crystal size is half	
LYSO + APD	Taiwan	C30739ECERH				Moliere radius	
ZDC ECal 2 nd	PbWO4	SiPM	2cm*2cm	5.3 cm (6×0)	6x6	Two sensors for	
PbWO4 + SiPM	Czech	MICROFC-60035		5.5cm (0A0)	0.00	one crystal	
Beam Monitor	Plastic	SiPM	2mm*2mm	8cm	32ch in X	Two sets	
	Scintillator	MICROFC-10010	211111 211111	ociti	32ch in Y	4 planes : 2X & 2Y	

50-800MeV positron beam

ZDC ECAL Test Beam Analysis

LYSO + APD

5x5 clustering (~5cm*5cm)

2025/06/11

- Gain calibration is performed with 5*5 crystals.
- Preliminary results gave energy resolution for "LYSO + APD"~40% with 706MeV beam.

PbWO4 + SiPM

3x3 clustering (~6cm*6cm)

2025/06/11

- Gain calibration is performed with 5*5 crystals.
- Preliminary results gave energy resolution for "PbWO4 + SiPM"~14% with 706MeV beam.

Apply Beam Selection

Beam Angle

- Spherical coordinate : XY-surface is defined as the BM surface.
- theta = 0 degree = perpendicular to the surface of BM/ZDC.
- Only ~ 10% beam shoots straightly.
 - 40% beam < 2 degree
 - 80% beam < 4 degree
 - 90% beam < 6 degree

(More studies later)

Energy resolution after Beam Selection LYSO + APD

Energy resolution after Beam Selection **PbWO4 + SiPM**

More Studies on Beam Angle

MC Simulation of Beam Profile

Wider spread for beam with smaller energy.

ZDC ECAL Test Beam Analysis

Beam Angle : Compare MC and Data

The beam angle is quite small MC. What we see from data should not be caused by the BM or the material in front of ZDC.

Calculation

material	X ₀ (mm)
Teflon(C ² F ⁴ _n)	155
Aluminum(Al)	88.9
Plastic Scintillator	424

Material	Tef	AL	PS	AL	PS	AL	Tef	x2 B.M.	Shell- AL
Thickness (mm)	2.2	0.08	2.24	0.16	2.24	0.08	2.2	-	3
x/X ₀	0.0142	0.0009	0.0053	0.0018	0.0053	0.0009	0.0142	Sum = 0.0852	0.0337

$$\frac{13.6MeV}{\beta p} Z \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln \frac{x}{X0}\right)$$

Molière scattering formula : It describes the root-mean-square (RMS) angular deflection due to multiple Coulomb scattering of a charged particle traversing a material.

Compare Data, MC, and Calculation

- Beam angle is larger in data compare to MC and calculation.
- Between MC and calculation, larger inconsistency for low energy beam less than 400MeV.
- We currently have no conclusion why we are seeing large beam angle in data.

More Studies on Gain Calibration

New Fitting Function

- Fit ADC distribution
- Old method : Double-side crystal ball (ExpL*Gaus*ExpR). Sometimes hard to fit when the distributions are very asymmetric.
- **New method : gaus* gaus_CDF**. The asymmetric distribution on the left-hand side is caused by the threshold cut of electronics. Fitting quality is better.

$$gaus_CDF(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\left(\frac{t-\mu}{\sigma}\right)^{2}/2} dx$$

ZDC ECAL Test Beam Analysis

ADC to Energy Mapping

2025/06/11

800

APD + LYSO

HV = 405V

Old fitting method (w/o energy to ADC mapping)

With the new gain calibration method, energy resolution improves, especially for low energy.

Summary and To Do

- We are working on improving the data analysis:
- **Beam cut:** not effective, still under investigation; unclear why the beam angle in data is so large.
- Gain calibration method: improved the energy resolution.
- Next step: practice linear energy regression with MC sample and apply to data.

Back up

Molière scattering formula

<u>PDG</u>

protons) and by Shen et al. [39] (relativistic pions, kaons, and protons).⁷

If we define

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}} , \qquad (34.15)$$

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of the projected angular distribution, with an rms width given by Lynch & Dahl [40]:

$$\theta_{0} = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{x}{X_{0}}} \left[1 + 0.088 \log_{10}(\frac{x z^{2}}{X_{0} \beta^{2}}) \right]$$
$$= \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{x}{X_{0}}} \left[1 + 0.038 \ln(\frac{x z^{2}}{X_{0} \beta^{2}}) \right]$$
(34.16)

Here p, βc , and z are the momentum, speed, and charge number of the incident particle, and x/X_0 is the thickness of the scattering medium in radiation lengths (defined below). This takes into account the p and z dependence quite well at small Z, but for large Z and small x the β -dependence is not

It describes the **root-mean-square (RMS) angular deflection due to multiple Coulomb scattering** of a charged particle traversing a material.

Gaussian-CDF(Cumulative Distribution Function)

- Definition of f(x) CDF:
 - CDF(x) = $\int_{-\infty}^{x} f(t) dt$
- CDF of Gaussian:

- Gaussian CDF(x; μ, σ) = $\frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\left(\frac{t-\mu}{\sigma}\right)^2/2} dx$, μ = mean, σ = S.D.

Varify Data and MC consistency Emax, E3*3, E5*5

HV = 395V, APD + LYSO

Old fitting method (w/o energy to ADC mapping)

New fitting method (w/ energy to ADC mapping)

Energy resolution improves around 3%.

ZDC ECAL Test Beam Analysis