

SPHE

June 20 2025

• Slide from Genki's last Si-Calo meeting, Following Genki's definition

Electron Simulation SetUp

KOREA UNIVERSITY

- SvtxTrack class includes various kinematic variables
- Track->get_x() get_phi(), get_z().... Default returns the track info at the R=0
- Need projection to EMCal surface and extract correct information for Si-Calo Matching
- Software is available (not easy to use unless you know how to use it..)
- Preparing macro so people can use it..

dPhi-pT function electron simulation

Making dphi-pT(truth) distribution -> Projection on X plane and fitting

Minimizer is Minuit2	/ Migra	d										
Chi2	=	38.9562										
NDf	=	43										
Edm	=	5.39605e-21										
NCalls	=	38										
p0	=	0.00644345	+/-	0.000141213								
p1	=	0.18019	+/-	0.000841162								
Fitted p0 = 0.00644345 ± 0.000141213												
NCalls p0 p1 Fitted p0 = 0.0064434	= = 5 ± 0.0	38 0.00644345 0.18019 00141213	+/- +/-	0.000141213 0.000841162								

Fitting Function : y(pT) = [0]+[1]/x(dphi)

Fitting range fix around the peak region only

5% of pT resolution achieved.(Almost reach to goal) pT = [I GeV/c,2 GeV/c] Genki's dphi resolution at I GeV/c ~ 3%, at 2GeV/c ~ 3.76% But here, dphi resolution is estimated with fixed eta

2nd report: Summary

	#event			ه اله	η dist		with EMCal hits asso. with beam		
Run		Beam	(GeV/c)	(rad)		(cm)	Δφ mean (mrad)	Δφ std. dev. (mrad)	Δφ resolution (%)
4	5.4E+04	μ·	0.5	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-385.3	8.7	2.25%
1	5.0E+04	µ⁻	1	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-186.0	3.9	2.07%
2	4.9E+04	μ-	2	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-91.9	1.9	2.10%
3	5.0E+04	μ	4	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-45.7	2.1	4.54%
9	5.6E+04	e-	0.5	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-392.1	12.3	3.14%
5	5.1E+04	e-	1	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-189.4	5.8	3.07%
6	2.9E+04	e⁻	2	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-94.3	3.5	3.76%
7	4.1E+04	e-	4	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-50.6	4.7	9.27%
8	4.5E+04	e⁻	8	[-π, π]	fixed at 0	fixed at (0, 0, 0)	-27.4	4.4	16.01%

• dphi-eta shows waving shape from both of us.

- SvtxTrack class includes various kinematic variables
- Track->get_x() get_phi(), get_z().... Default returns the track info at the R=0
- Need projection to EMCal surface and extract correct information for Si-Calo Matching
- Software is available (not easy to use unless you know how to use it..)
- Preparing macro so people can use it..

Check eta dependence of pT-dphi relation

• Magnetic field map effect

Macro / code framework overview

Recap

SiliconSeedAna Output information

https://github.com/gwd213/INTT/tree/main/general_codes/Jaein/SiliconSeeding

trackTree;1 🖉 evt 💋 track_id aeta 🖉 🛾 phi chi2ndf charge nmaps nintt innerintt outerintt crossing x_emc _emc z_emc eta_emc phi_emc pt_emc

Evt : event number track id (x,y,z) Eta,phi,pt at R=0 Track Chi2ndf Charge(+ or -)

(x_emc,y_emc,z_emc) position at R=93.5 cm eta_emc phi_emc, pt_emc at R=93.5 cm

caloTree;1 calo_evt calo_evt x y z phi energy Track-associated Clusters information from Silicon Note)We can use it for dphi - pT conversion

Calo cluster information (EMCal only)

NOTE

(x0,y0,z0) (px0,py0,pz0) (xproj_emc,yproj_emc,zproj_emc) Truth information TTree Put some truth vs reco comparison

Projection test with electron gun

Trial for Si-Calo matching

Try to Si-Calo matching .. electron gun might not good enough.. Try J/ ψ reconstruction with J/ ψ gun! -> more than 1 track! also Good test tool for E/p cut ; rejection for di-muon / hadronic decay

