
Cluster Reconstruction
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ParticleGen
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/InttSeedTrackP
erformance

CaloGeomMappingv2.h & CaloGeomMappingv2.cc
CaloGeomMappingv2 is used to load the new, accurate EMCal geometry and store it
within RawTowerGeomv5.

RawTowerGeomv5.h & RawTowerGeomv5.cc
These files are used to store the descriptions of the eight vertices of each tower,
along with some simple functions to obtain the centers of certain surfaces.

tutorial.h & tutorial.cc
In simulation events, read the information stored in each node, including truth
information, track detector information, and EMCal information.

Fun4All_physiTuto.C
Simulate particle interactions in sPHENIX, producing truth information and the
reconstruction information of each detector.

CaloInfo.C
Study cluster position reconstruction and correction.
From the previous simulation files, read the first g4hit produced by the primary
electron in the EMCal as the truth position.
Read Cluster_innr and Cluster_geom, that is, “cluster reconstruct with tower inner
face center” and “cluster reconstruct with tower volume center,” as the
reconstructed position.
Compare the difference between the reconstructed position and the truth position,
and compute the distance difference.
Then split the distance into radial and tangential directions, mainly study the angular
difference in the tangential direction between the reconstructed position and the
truth position, study the bias of the reconstructed position of positrons and electrons
with different energies relative to the truth position, plot dphi–pT, write the results
as TGraph/TF1, and store them in a ROOT file. When performing Cluster_innr
reconstruction, the correction can be obtained by interpolating in the corresponding
TGraph/TF1 according to its charge and energy
correction TGraph/TF1 named “grPeakVsX” and “fitCurve” on file
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/Par
ticleGen/output (wC - with Correct; woC -without Correction) with

TruthToSvtxTrack.h & TruthToSvtxTrack.cc
Read G4primary information and, based on it, set up an svtxtrack.

1

https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ParticleGen
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ParticleGen
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ParticleGen/output
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ParticleGen/output

PT func
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/InttSeedTrackPerf
ormance

GetPtFunc.C
Read simulation data and extract the charged particle’s deflection angle Δφ, the
particle’s truth η, and the particle’s truth pT.
Then compute C(η) = pT·Δφ to obtain (η, C(η)). Next, use a polynomial fit on these
data points to get the relation between pT and C(η). First do a rough fit over a wide
range, then based on the rough fit perform a precise fit to obtain the C(η) – η
function.
Store the fitted function in a ROOT file.

calc_pt_fromFunc.C
Read the TF1 function from the ROOT file, then compute pT = C(η)/Δφ, and study the
pT performance (resolution) calculated from the function. Store the results in a ROOT
file.
At present, referring to Takashi’s result, the Δφ term in the function is Δφ-0.986, which
is better than Δφ-1.
Therefore, the above code also considers using Δφ-0.986. That is, use C(η) = pT·(Δφ0.986)
to obtain C(η), and use pT = C(η)/(Δφ0.986) to compute pT.

How to use the function?
First you need the deflection angle Δφ and the particle’s η (in my simulation the
vertex is at (0,0,0), so I directly used the EMCal position η).
Open the ROOT file where I stored the function, obtain the C(η) – η function, and use
η to get the corresponding C(η) from the function.
Compute the particle’s pT = C(η)/Δφ, or pT = C(η)/(Δφ0.986). You can refer to my
calc_pt_fromFunc.C file for the related code.

The term of C(η) on Pt func with Δφ1 & Δφ0.986 results have been stored on root file:
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/InttSeedTrackP
erformance/output

2

https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/InttSeedTrackPerformance
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/InttSeedTrackPerformance

ML 4 RECO
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ML4Reco

A. From [INTT_R,Z + calo_R,Z,E] to pt
version2/data.py
Receive the root file and read the branch from the tree

branches_to_load = [

"trk_system", "trk_layer", "trk_X", "trk_Y", "trk_Z",

"caloClus_system", "caloClus_X", "caloClus_Y", "caloClus_Z", "caloClus_edep",

"caloClus_innr_X", "caloClus_innr_Y", "caloClus_innr_Z", "caloClus_innr_edep",

"PrimaryG4P_Pt"

]

Then analyze it and extract iINTT oINTT and EMCal Cluster Position R, Z and Energy

trk_feat = np.array([

r34, p34[-1], # iINTT 3/4 layer → r, z

r56, p56[-1] # oINTT 5/6 layer → r, z

])

calo_innr_feat = np.array([

r_innr,

calo_innr_z[0],

calo_innr_e[0]

])

Then they are spliced together

feat = np.concatenate([trk_feat, calo_innr_feat])

X_data.append(feat)

As the input feature of the model, this input includes the R, Z values of the two positions provided by

INTT, as well as the R, Z values and energy of the position of EMCal.

Y_data.append(Truth_Pt[0])

Extract the "truth pt" of electrons as the Y target of the model.

version2/model.py
self.net = nn.Sequential(

nn.Linear(input_dim, hidden_dim),

nn.ReLU(),

nn.Linear(hidden_dim, hidden_dim),

nn.ReLU(),

nn.Linear(hidden_dim, hidden_dim),

nn.ReLU(),

nn.Linear(hidden_dim, 1))

The MLP network consists of an input-output layer and three hidden layers. The input layer receives 7

standardized features (iINTT R, iINTT Z, oINTT R, oINTT Z, EMCal Cluster R, EMCal Cluster Z, EMCal Cluster

Energy), and each hidden layer node has 256 nodes. The output prediction value is used as the reconstructed

point.

3

version2/train_ptbin.py
The training parameters are set as follows: The training data is divided into a 70% training set and a

30% validation set. In each epoch, the training set is shuffled to eliminate the influence of sequence.

def train(list_file, pt_min=0.0, pt_max=2.0, batch_size=1024, epochs=300, lr=5e-5, val_ratio=0.3,

device="cuda" if torch.cuda.is_available() else "cpu"):

The loss function is defined as follows

xb, yb = xb.to(device), yb.to(device)

pred = model(xb)

pt_reso = (pred - yb) / (yb) ### Relative resolution as main term

weights = (pt_reso.abs() < 0.2).float() * 2.0 + 1.0 ### Increase the weight inside the peak,

reduce the influence of outlier data points

loss = ((pt_reso) ** 2 * weights).mean() ### Use squared values instead of absolute values to make the

peak position closer to zero.

if val_loss < best_val_loss:

best_val_loss = val_loss

torch.save(model.state_dict())

print(f"✓ Saved best model (val loss = {val_loss:.4f})") ### Saved best model

version2/test_ptbin.py
Call the previously trained model, use it in the test set, and study the "performance
(pt resolution)"

B. From [∆Φ] to pt
version4/data.py
Receive the root file and read the branch from the tree.

branches_to_load = [

"trk_system", "trk_layer", "trk_X", "trk_Y", "trk_Z",

"caloClus_system", "caloClus_X", "caloClus_Y", "caloClus_Z", "caloClus_edep",

"caloClus_innr_X", "caloClus_innr_Y", "caloClus_innr_Z", "caloClus_innr_edep",

"PrimaryG4P_Pt"

]

Then, conduct an analysis on it, extract the x and y positions of iINTT and oINTT, as well as the x and

y positions of the EMCal Cluster. Connect iINTT and oINTT, then connect EMCal and oINTT. Calculate the

angle between the two lines, and take the 1/delta-phi as feature.

proxy_trans = 1/dphi

feat = np.array([proxy_trans, 0])

As the input feature of the model

X_data.append(feat)

Extract the "truth pt" of electrons as the Y target of the model

Y_data.append(Truth_Pt[0])

4

version4/model.py
self.net = nn.Sequential(

nn.Linear(input_dim, hidden_dim),

nn.ReLU(),

nn.Linear(hidden_dim, hidden_dim),

nn.ReLU(),

nn.Linear(hidden_dim, hidden_dim),

nn.ReLU(),

nn.Linear(hidden_dim, 1) # 回归输出

)

The MLP network consists of an input-output layer and three hidden layers. The input layer receives the

reciprocal of the deflection angle (1/delta-phi), and the nodes in each hidden layer are all 256. The

output prediction value serves as the reconstructed point.

version4/train_ptbin.py
The training parameters are set as follows: The training data is divided into a 70% training set and a

30% validation set. In each epoch, the training set is shuffled to eliminate the influence of sequence.

def train(list_file, pt_min=0.0, pt_max=2.0, batch_size=1024, epochs=500, lr=5e-5, val_ratio=0.2,

device="cuda" if torch.cuda.is_available() else "cpu"):

The loss function is defined as follows:

The relative resolution is the main component.pt_reso = (pred - yb) / (yb)

weights = (pt_reso.abs() < 0.2).float() * 2.0 + 1.0

main_loss = ((pt_reso) ** 2 * weights).mean()

== boundary loss ==

Add boundary conditions outside the data range to ensure that the pt estimate is sufficiently elevated

at small angles.

x1 = np.array([0, 0.5, 1, 2, 10, 15, 25, 50, 100, 200])

x2 = np.zeros_like(x1)

x_boundary_np = np.stack([x1, x2], axis=1)

x_boundary = torch.tensor(x_boundary_np, dtype=torch.float32).to(device)

y_boundary_target = torch.tensor([0, 0.0961, 0.1922, 0.3844, 1.922, 2.883, 4.805, 9.61, 19.22, 38.44],

dtype=torch.float32).unsqueeze(1).to(device)

y_boundary_pred = model(x_boundary)

boundary_loss = nn.MSELoss()(y_boundary_pred, y_boundary_target)

Dynamic weighting to prevent affecting data learning in the early stages.

lambda_boundary = min(0.005 * epoch, 0.2)

== monotonic penalty ==

requires pt to decrease as the angle increases; avoid oscillations occur.

x_sorted, indices = torch.sort(xb[:,0])

pred_sorted = pred[indices]

mono_penalty = monotonic_loss(pred_sorted)

5

=== sum loss ===

loss = main_loss + lambda_mono * mono_penalty + lambda_boundary * boundary_loss

if val_loss < best_val_loss:

best_val_loss = val_loss

torch.save(model.state_dict())

print(f"✓ Saved best model (val loss = {val_loss:.4f})") ### Saved best model

version4/test_ptbin.py
Call the previously trained model, use it in the test set, and study the "performance
(pt resolution)"

Fusion A and B
combine2_gate/data_combined.py
First, load the previously trained weights, and then construct the datasets required by each of the previous

two models.

ds_dphi = dphiDataset(list_file, pt_min=pt_min, pt_max=pt_max)

ds_energy = energyDataset(list_file, scaler=scaler_energy, pt_min=pt_min, pt_max=pt_max)

Obtain the predicted values of the two models separately and use them as the input

pt_pred1 = model_dphi(x1.unsqueeze(0).to(device)).cpu().item()

pt_pred2 = model_energy(x2.unsqueeze(0).to(device)).cpu().item()

X_fusion.append([pt_pred1, pt_pred2])

target is truth pt

Y_fusion.append(truth)

combine2_gate/model_combined.py
Here, a gate net is used to train an MLP to determine the weights by which to
combine [p1, p2] reconstructed from the previous two models to obtain pt_pred.

combine2_gate/train_combined.py
xb, yb = xb.to(device), yb.to(device)

pred = model(xb)

pt_reso = (pred - yb) / (yb)

weights = (pt_reso.abs() < 0.2).float() * 2.0 + 1.0

loss = ((pt_reso) ** 2 * weights).mean()

The definition of the loss function is similar to that mentioned earlier

combine2_gate/test_combined.py
Call the previously trained model, use it in the test set, and study the performance.

6

How to use them?

Training:
For Models A and B (on version2 and version4), go into each model’s directory and run
train_ptbin.py. Before running, check that your training dataset includes the tree and branches
defined in data.py; data format follows the class modules in ParticleGen/physiTuto/tutorial.h
and ParticleGen/physiTuto/tutorial.cc on that write data into those branches.
For the Fusion model in combine2_gate, you need the prediction outputs from Models A and B.
Copy their data.py and model.py into the combine2_gate directory and rename them to match
each architecture: data_dphi.py, model_dphi.py for the ΔΦ-based model, and data_energy.py,
model_energy.py for the energy-based model. Then, in data_combined.py, load the pretrained
weights for Models A and B and set the correct path to Model A’s normalization scaler (change
the absolute paths to where your weights are stored). After that, run train_combined.py.

I have uploaded my training weights. They seem quite a lot files, but you can see which one is
currently named in the "train" section or which one is loaded in the "test" section, and then you
will know which one to use.

Test:
In the version2 and version4 directories, run test_ptbin.py. In the combine2_gate directory, run
test_combined.py. Each script will load the saved model weights and report the reconstruction
performance.

You can reference my data struction from example file on:
https://github.com/Joy-whale0321/INTT-EMCAL/tree/main/InttSeedingTrackDev/ML4Reco/Filelist

Performance I have: Maybe its better cause I plot them by a rough fitting

7

