

Future Direction in High Energy QCD At RIKEN, October 2011

## **QCD** at KEKB and SuperKEKB

Toru lijima Kobayashi-Maskawa Institute Nagoya University October 22, 2011





## Talk Outline

- Polarized Fragmentation Functions
- Hadron Spectroscopy
- SuperKEKB/Belle II

(Deep) Apology I can't cover all subjects. I am not an expert of FF. (RIKEN people know better)







### **The KEKB Collider**



### Luminosity at B Factories



1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

KEKB/Belle operation terminated at 9:00am, June 30, 2010



## Characteristic of the B-factory

- Acceptance: 0.9  $\times 4\pi$
- Vertex resolution  $\sigma(J/\psi \rightarrow II) \sim 75$ nm
- Momentum resolution  $\sigma(Pt) = 0.19 \cdot Pt \oplus 0.34/\beta$  %
- Energy resolution  $\sigma(E_{\gamma})/E_{\gamma} = 1.8\% @ 1GeV$
- Particle ID
  - e, μ, π, K, p
- Minimum bias trigger
  - Evis >= 1GeV & Ntrk >= 2
  - & Ncluster >= 4



essentially no loss for BB.

5

Clean environment. Well defined kinematics



### Achievement of the B-factories

Ţ

-1.5

-1.0

-0.5

0.0

#### Belle 2006 (532M BB)

 $sin2\phi_1 = 0.642 \pm 0.031 \text{ (stat)} \pm 0.017 \text{ (syst)}$ 





0.5

 $\overline{\rho}$ 

1.0

1.5

2.0

### Belle Studies for Nucleon Spin Structure

- Transverse spin structure of the nucleon is only poorly understood.
- Its extraction requires spindependent fragmentation functions (FF).
  - Collins FF
- "quark polarimeter"

**Collins FF** 

Interference FF (IFF)

Measurements at Belle (e+e-)

Collins FF x Collins FF

IFF x IFF

Transversity  $\Delta_T q(x) x$ 

Measurements at RHIC, SIDIS etc.:



### **Collins Fragmentation Function**

• Collins effect:

Relation between transverse quark spin and the final state azimuthal distribution of hadrons.

$$D_{hq^{\dagger}}(z, \mathbf{P_{h\perp}}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \\ \times \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h},$$





### Belle Collins FF $\rightarrow$ Transversity PDF

PRD 78, 032011 (2008)



547 fb<sup>-1</sup>

Red points :  $cos(\phi_1 + \phi_2)$  moment of unlike sign pion pairs over like sign pion pair ratio : A<sup>UL</sup>

Green points :  $cos(\phi_1 + \phi_2)$  moment of Unlike sign pion pairs over any charged pion pair ratio : A<sup>UC</sup>

#### First Global Analysis Results

Phys. Rev. D75, 054032 (2007) Update in Nucl. Phys. Proc. Suppl. 191, 98 (2009)

Together with HERMES, COMPASS First, still model-dependent extraction.



## Interference FF (IFF)

#### PRL 107, 072004 (2011)

- IFF is sensitive to the transverse polarization of the fragmenting quark.
- Complementary to Collins FF.
- By detecting the 2<sup>nd</sup> hadron, the sensitivity to the quark spin survives integration over transverse momenta.





Interference effect in e<sup>+</sup>e<sup>-</sup> quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements!

#### Experimental requirements:

- Small asymmetries → very large data sample!
- Good particle ID to high momenta.
- Hermetic detector
- •Observable: $\cos(\varphi_{Rl} + \varphi_{R2})$

modulation measures  $H_1^{\angle} \overline{H}_1^{\angle}$ 

## IFF Results: (z<sub>1</sub> x z<sub>2</sub> ) binning



• Magnitude increasing with z

PRL 107, 072004 (2011)

## IFF Results: $(m_1 \times m_2)$ binning



Magnitude increasing with mass, then leveling off

### First Transversity Extraction

• From HERMES + Belle IFF data.

Alessandro Bacchetta at RHIC DY workshop May 2011:

```
First glimpses at transversity
```



- Early studies indicate little effect of evolution in Collins function, both results comparable
- Preliminary data by Compass and PHENIX not used

Not in disagreement with Anselmino et al.

Bacchetta, Radici, Courtoy, arXiv:1104.3855

Monday, 6 June 201

#### New Hadrons at Belle



生成プロセス

π

a

 $\overline{\mathbf{C}}$ 

S

Y(1S) ππ の生成反応率

11

11.05

## XYZ at B Factories













#### SVD as a target



| State                  | Mass (MeV)       | Width (MeV)    | Decay                                | Production                  |
|------------------------|------------------|----------------|--------------------------------------|-----------------------------|
| Ys(2175)               | 2175±8           | 58±26          | $\phi f_0$                           | ISR                         |
| X(3872)                | 3871.84±0.33     | <0.95          | J/ψππ, J/ψγ                          | B decay                     |
| X(3872)                | 3872.8 +0.7/-0.6 | 3.9 +2.8/-1.8  | D*0D0                                | B decay                     |
| Z(3940)                | 3929±5           | 29±10          | DD                                   | үү                          |
| X(3940)                | 3942±9           | 37±17          | DD*                                  | Double-charm                |
| Y(3940)                | 3942±17          | 87±34          | J/ψω                                 | B decay                     |
| Y(4008)                | 4008 +82/-49     | 226 +97/-80    | J/ψππ                                | ISR                         |
| Z(4051) <sup>+</sup>   | 4051 +24/-43     | 82 +51/-28     | πχ <sub>c1</sub>                     | B decay                     |
| X(4160)                | 4156±29          | 139 +113/-65   | D*D*                                 | Double-charm                |
| Z(4248)+               | 4248 +185/-45    | 177 +320/-72   | πχ <sub>c1</sub>                     | B decay                     |
| Y(4260)                | 4264±12          | 83±22          | J/ψππ                                | ISR                         |
| Y(4350)                | 4361±13          | 74±18          | ψ'ππ                                 | ISR                         |
| Z(4430)+               | 4433±5           | 45 +35/-18     | ψ'π                                  | B decay                     |
| Y(4660)                | 4664±12          | 48±15          | ψ'ππ                                 | ISR                         |
| Y <sub>b</sub> (10890) | 10889.6±2.3      | 54.7 +8.9/-7.6 | ππƳ(nS)                              | e⁺e⁻ annihilation           |
| Y(3915)                | 3915±4           | 17±10          | <b>J</b> /ψω                         | γγ                          |
| X(4350)                | 4350 +4.7/-5.1   | 13 +18/-14     | <b>J</b> /ψφ                         | γγ                          |
| Z <sub>b</sub> (10610) | 10608.4±2.0      | 15.6±2.5       | $(\Upsilon(nS) \text{ or } h_b) \pi$ | Υ(5S) /Y <sub>b</sub> decay |
| Z <sub>b</sub> (10650) | 10653.2±1.5      | 14.4±3.2       | ( $\Upsilon(nS)$ or $h_b$ ) $\pi$    | Υ(5S) /Y <sub>b</sub> decay |

#### Newly observed hadronic states

- Y(3915) [ γγ → J/ψ ω ] : PRL 104, 092001 (2010)
- X(4350) [ γγ → J/y φ ] : PRL 104, 112004 (2010)
- h<sub>b</sub>(1P,2P) [Y(5S)→ππ X<sub>miss</sub>]

arXiv: 1103.3419, submitted to PRL

•  $Z_{b}^{+}(10610, 10650) [\pi + Y(1S, 2S, 3S) (n=1, 2, 3) \text{ or } h_{b}(1P, 2P)]$ arXiv: 1110.2251, submitted to PRL

Detailed properties of X(3872)

- Obs. of X(3872) → J/ψ γ & search for X(3872) → ψ'γ
   PRL 107, 091803 (2011)
- Study of  $B \rightarrow K X(3872) \rightarrow K D^{*0} D^{0}$  decay : PRD 81, 031103 (2010)
- Comparison of X(3872) from B<sup>+</sup>/B<sup>0</sup> decays : arXiv: 0809.1224
- $X(3872) \rightarrow \pi^+\pi^- J/\psi$  angular distribution etc. : PRD 84, 052004(R) (2011)





## Introduction to h<sub>b</sub>(nP)

(bb): S=0 L=1 J<sup>PC</sup>=1<sup>+-</sup>

 $\frac{\text{Expected mass}}{\approx (M\chi_{b0} + 3 M\chi_{b1} + 5 M\chi_{b2}) / 9}$ 

 $\Delta M_{\rm HF} \Rightarrow$  test of hyperfine interaction

For  $h_c \Delta M_{HF} = -0.12 \pm 0.30$  MeV, expect smaller deviation for  $h_b(nP)$ 





### Nature of $\Upsilon(5S)$



Nature of  $\Upsilon(5S)$  is puzzling and not yet understood

## $Y(4260) \rightarrow h_c \pi^+ \pi^-?$

Observation of  $e^+e^- \rightarrow \pi^+\pi^- h_c$  by CLEO

#### arXiv:1104.2025





#### **Simple selection :**

good quality, positively identified

Suppression of continuum events FW R<sub>2</sub><0.3 (isotropic decay topology)

### h<sub>b</sub> : Missing Mass Dist.





## Ύ(nS)π⁺π⁻



Dalitz Plot Amplitude analysis 2 Resonances  $(Z_b) + f_0(980) + f_2(1275) + NR$ 

## Ύ(nS)π⁺π⁻

arXiv:1105.4583

#### Projections to $max(M(\Upsilon \pi))$ axis



Two resonances:  $Z_b^+(10510)$ ,  $Z_b^+(10560)$ 

Two peaks at the same positions in the 3 modes.

## h<sub>b</sub>(nP)π⁺π⁻

#### arXiv:1105.4583



 $M(h_b\pi^+)$  = Missing Mass against  $\pi^-$ 

Two peaks at the positions same as  $\Upsilon(nS)\pi^+\pi^-$ 

## Z<sub>b</sub>(10610) & Z<sub>b</sub>(10650)



arXiv:1105.4583



### How to achieve "Super Luminosity"



| For higher Luminosity;                              | In case of KEKB $\rightarrow$ Su | perKEKB |
|-----------------------------------------------------|----------------------------------|---------|
| 1) Vertical $\beta$ function at IP ( $\beta_y^*$ ): | 5.9 → 0.27/0.30mm                | (x20)   |
| 2) Increase beam currents:                          | 1.7/1.4 → 3.6/2.7 A              | (x 2)   |
| 3) Increase ξ <sub>y</sub>                          | 0.09 → 0.09                      | (x 1)   |

Basic concept: "Nano-beam scheme" Invented by P. Raimondi for SuperB 28



Vertical beta function at IP can be squeezed to  ${\sim}300\mu m.$  Need small horizontal beam size at IP.

 $\rightarrow$  low emittance, small horizontal beta function at IP.

#### Belle II T-shirts **Belle II Detector** 1300 Yen Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. $0.5 \rightarrow 30$ kHz) Improved performance and hermeticity RPC µ & K CsI(TI) EM counter: calorimeter: scintillator + Si-PM waveform sampling for end-caps electronics, pure Csl for endcaps 4 layers DS Si vertex Belle II detector $\rightarrow$ 2 layers PXD (DEPFET), 4 layers DSSD Time-of-Flight, Aerogel Cherenkov Counter $\rightarrow$ **Time-of-Propagation** (barrel), prox. focusing Aerogel RICH (forward) Central Drift Chamber: smaller cell size, long lever arm International collaboration from: Australia, Austria, China, Czech, Germany, Inida, Korea, Poland, Russia, Saudi Arabia, Slovenia, Spain, Taiwan, USA, Japan



# Belle II Constructio

|                |                     | 2010                             | 2011                               |                        |                              |
|----------------|---------------------|----------------------------------|------------------------------------|------------------------|------------------------------|
|                |                     | 123456789                        |                                    |                        |                              |
| Belle roll-out |                     |                                  |                                    |                        |                              |
| Belle disasser | n                   |                                  |                                    |                        |                              |
| Rotation       |                     |                                  |                                    |                        |                              |
|                |                     |                                  |                                    |                        |                              |
| E-KLM          | R&D                 | R&D                              |                                    |                        |                              |
|                | Production          |                                  | Strip production, fiber glueing    |                        |                              |
|                | Installation        |                                  |                                    | Assembly, Installation |                              |
| B-KI M         | PID                 | P?D                              |                                    |                        |                              |
| DINLIM         | Production          | R&D                              |                                    |                        |                              |
|                | Installation        |                                  |                                    | Assembly, Installa     |                              |
|                |                     |                                  |                                    | ¥                      | 8                            |
| ECL            | Prototyping, evalua | ation Prototyping, Evaluation of | readout electronics                |                        |                              |
|                | Production          |                                  | Connecto                           | P/B Barrel electronics |                              |
|                | Installation        |                                  |                                    |                        | 0 0 00                       |
|                |                     |                                  |                                    |                        |                              |
| A-RICH         | Aerogel             | R&D                              | Desidention                        | Production             | Hamamatsu MCP-PMI            |
|                | ASIC                |                                  | Production                         | Production             | 27.0                         |
|                | Installation        | Rad                              |                                    | Froduction             |                              |
|                | motaliation         |                                  |                                    |                        |                              |
| TOP            | Quartz Bar          | Test production, evaluatio       | n Pro                              | duction                |                              |
|                | MCP-PMT             | Test production, evaluatio       | n Production                       |                        |                              |
|                | Installation        |                                  |                                    |                        |                              |
|                |                     |                                  |                                    |                        |                              |
| CDC            | Chamber             | Design                           | Fabrication                        | 4                      | and plate ready for drilling |
|                | Readout electronic  | s R&D                            |                                    | Production             | enu-plate ready for unining  |
|                |                     |                                  |                                    |                        |                              |
| SVD            | Sensor              | Evaluation                       | Production                         |                        | · 105:000                    |
|                | Hybrid              | Prototyping and Evaluatio        | n Production                       |                        |                              |
|                | Ladder              |                                  | Asse                               | nbly                   |                              |
|                | Ladder mount        |                                  |                                    |                        |                              |
| PYD            | Sancar              | Prototyning toot                 | Design of BXD7 (final version BXD7 | processing thipping    |                              |
| FAD            |                     | Prototyping, test                |                                    |                        |                              |
|                | Module              | r rototyping, test               |                                    | COF B70                |                              |
|                | Module mount        |                                  |                                    |                        | DSSD-sensor+APV25            |
|                |                     |                                  |                                    |                        |                              |
| Beam pipe      |                     | R&D, evaluations                 |                                    |                        |                              |
|                |                     |                                  |                                    |                        |                              |
| BP+PXD+SVD     | Integration         |                                  |                                    |                        | CANANA STATE                 |
|                | Installation        |                                  |                                    |                        |                              |
|                | _                   |                                  |                                    |                        | _                            |
|                |                     |                                  |                                    |                        |                              |
|                |                     | Designed to                      | ) match the mad                    |                        |                              |
|                |                     |                                  |                                    |                        |                              |
|                |                     | schedule ar                      | nd keen un with                    |                        |                              |
|                |                     |                                  |                                    |                        | 32                           |

KLM module 0

ECL electronics

## Summary

- B factories have played unique role also in QCD physics. More results will come from existing large data.
  - Structure functions
    - First measurements of Collins FF, IFF,

- Unpolarized FF (π, η, K, p,..)
- Continue measuring Spin-dep. FF
  - kT dep. of Collins function,
  - π<sup>0</sup>, η, K Collins
  - πK, KK IF
- Others...





Upgrade to SuperKEKB/Belle II in progress. Collins will start from 2015.

#### More opportunities

- Fragmentation Physics
  - High precision fragmentation function
  - With variety of final states
- Spectroscopy
  - More new states w/ variety of flavors
  - Properties of observed states (J<sup>PC</sup>, decay modes,...)

I am sure SuperKEKB/Belle II will be a great tool also for QCD qualitatively, and want more (quantitative) studies.

Your inputs are very welcome ! 34

### Advertisement

#### Grant-in-aid for innovative scientific research area "Elucidation of new hadrons with a variety of flavors". We welcome your contribution !



#### Visit our home page !

http://www.hepl.phys.nagoya-u.ac.jp/public/new\_hadron/index.html





## Asymmetry extraction



• Build normalized yields:



or 
$$a_{12}\cos(\phi_1 + \phi_2) + b_{12}$$

 $a_{12}\cos(\phi_1 + \phi_2) + b_{12} + c_{12}\cos 2(\phi_1 + \phi_2) + d_{12}\sin(\phi_1 + \phi_2)$ 

Amplitude a<sub>12</sub> directly measures ( IFF ) x ( -IFF ) (no double ratios)

### Unpolarized Fragmentation Functions

- Precision Measurement of unpolarized FFs important for almost all extractions of PDFs
- But this is a hard measurement, at Belle
  - Extensive systematic studies for PID effects: calibration & deconvolution/ correction
  - further corrections for momentum smearing, acceptance effects, ....



### Unpolarized Fragmentation Functions

Measurement will give precision data set for low Q<sup>2</sup> and high z:



## Possible Interpretation

- <u>Tetraquarks</u>: diquark-antidiquark [cq][<u>cq</u>]
  - Tightly bound diquarks (gluon exchange)
  - Decay proceeds with "coloured" quarks rearrange into "white" mesons

#### <u>Molecules</u>: M(c<u>q</u>)M(<u>c</u>q)

- Meson and antimeson loosely bound (pion exchange)
- Decay: dissociation into constituent mesons

#### Tetraquark



#### D<sup>(\*)</sup>D<sup>(\*)</sup> Molecule



#### • <u>Hybrids</u>: c<u>c</u> + excited gluon (excited flux-tube)

- Lattice QCD predicts lightest hybrids @ 4.2GeV
- Exotic quantum numbers J<sup>PC</sup> = 0<sup>+-</sup>, 1<sup>-+</sup>, 2<sup>+-</sup>...
- $\Gamma(H \rightarrow D\underline{D}^{**}) > \Gamma(H \rightarrow D\underline{D}^{(*)})$
- Large  $\Gamma(H \rightarrow \psi \pi \pi, \psi \omega,...)$

#### Hybrid



# X(3872) Radiative Decays

C = +





 $X(3872) \rightarrow \psi' \gamma$ 信号見えず: D<sup>0-</sup>D<sup>\*0</sup> molecule  $\frac{\text{Br}(X(3872) \rightarrow \psi' \gamma)}{\text{Br}(X(3872) \rightarrow J/\psi \gamma)} < 2.1$  $B^{\pm} \rightarrow \psi' \gamma K^{\pm}$ (a)

38

39

M<sub>ψ(25) γ</sub> (GeV/c<sup>2</sup>)

3 95

arXiv:1105.0177 (accepted by PRL)

### J<sup>PC</sup> of X(3872)

- Evidence of X(3872) $\rightarrow$ J/ $\psi \gamma$ , J/ $\psi \rho$  imply C-even assignment.
- $X(3872) \rightarrow J/\psi \rho$  is right at the threshold.

favor low values of spin quantum numbers.



All J<sup>PC</sup> values other than 1<sup>++</sup> or 2<sup>-+</sup> are ruled out. consistent with the CDF result. PRL 98, 132002 (2007)

## Machine Parameters

|                                           |                                  | SuperKEKB              |            | SuperB (base line)     |               |
|-------------------------------------------|----------------------------------|------------------------|------------|------------------------|---------------|
| Parameters                                | unit                             | LER                    | HER        | LER                    | HER           |
| Circumference                             | m                                | 3016.3                 |            | 1258.4                 |               |
| Energy                                    | GeV                              | 4                      | 7          | 4.18                   | 6.7           |
| Half x-ing angle                          | mrad                             | 41.5                   |            | 33                     |               |
| $\beta_x^*$ / $\beta_y^*$ at IP           | mm                               | 32 / 0.27              | 25 / 0.31  | 32 / 0.205             | 26 / 0.253    |
| Hor. emittance ( $\epsilon_x$ )           | nm                               | 3.2                    | 5.0        | 2.46                   | 2.00          |
| $\sigma_{\rm x}$ / $\sigma_{\rm y}$ at IP | μm                               | 10.2/0.059             | 7.75/0.059 | 8.872 / 0.036          | 7.211 / 0.036 |
| Beam-beam (ξ <sub>y</sub> )               |                                  | 0.0886                 | 0.0830     | 0.0971                 | 0.0970        |
| N <sub>bunches</sub>                      |                                  | 2500                   |            | 978                    |               |
| Beam currents                             | А                                | 3.6                    | 2.6        | 2.447                  | 1.892         |
| Luminosity                                | cm <sup>-2</sup> s <sup>-1</sup> | 0.8 x 10 <sup>36</sup> |            | 1.0 x 10 <sup>36</sup> |               |

Compared to KEKB/PEP II

•Smaller beam size and higher currents.

•Larger (half) crossing angle than (11mrad @ KEKB)

•Less energy asymmetry (higher E<sub>LER</sub>) for longer Touschek lifetime (LER).

#### **Angular analyses**



#### Definition of angles

 $\theta_i = \angle(\pi_i, e^+), \phi = \angle[plane(\pi_1, e^+), plane(\pi_1, \pi_2)]$ 

Example :  $\Upsilon(5S) \to Z_{b}^{+}(10610) \pi^{-} \to [\Upsilon(2S)\pi^{+}] \pi^{-}$ 



Color coding:  $J^{P}=1^{+}1^{-}2^{+}2^{-}$  (0<sup>±</sup> is forbidden by parity conservation)

Best discrimination:  $\cos\theta_2$  for 1<sup>-</sup> (3.6 $\sigma$ ) and 2<sup>-</sup> (2.7 $\sigma$ );  $\cos\theta_1$  for 2<sup>+</sup> (4.3 $\sigma$ )

#### **Summary of angular analyses**

All angular distributions are consistent with  $J^P=1^+$  for  $Z_b(10610)$  &  $Z_b(10650)$ .

All other  $J^P$  with J≤2 are disfavored at typically  $3\sigma$  level.

| τP      | $Z_b(10610)$             |                          |                     | $Z_b(10650)$             |                          |                     |
|---------|--------------------------|--------------------------|---------------------|--------------------------|--------------------------|---------------------|
| J-      | $\Upsilon(2S)\pi^+\pi^-$ | $\Upsilon(3S)\pi^+\pi^-$ | $h_b(1P)\pi^+\pi^-$ | $\Upsilon(2S)\pi^+\pi^-$ | $\Upsilon(3S)\pi^+\pi^-$ | $h_b(1P)\pi^+\pi^-$ |
| 1-      | $3.6 \sigma$             | $0.3 \sigma$             | $0.3\sigma$         | $3.7 \sigma$             | $2.6 \sigma$             | $2.7 \sigma$        |
| $2^{+}$ | $4.3 \sigma$             | $3.5 \sigma$             | $4.3\sigma$         | $4.4 \sigma$             | $2.7 \sigma$             | 01-                 |
| $2^{-}$ | $2.7 \sigma$             | $2.8 \sigma$             |                     | $2.9 \sigma$             | $2.6 \sigma$             | 2.1 σ               |

Probabilities at which different  $J^P$  hypotheses are disfavored compared to  $1^+$ 

#### Preliminary:

procedure to deal with non-resonant contribution is approximate, no mutual cross-feed of  $Z_b$ 's

#### **Summary**

First observation of h<sub>b</sub>(1P) and h<sub>b</sub>(2P)

Hyperfine splitting consistent with zero, as expected Anomalous production rates

arXiv:1103.3419 submitted to PRL

| Observation of two cha                   | arged bottomonium-like resonances in the second s | 5 final states                |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Ύ(1S)π <sup>+</sup> , Ύ(2S) <sup>·</sup> | <mark>π<sup>+</sup>, Ύ(3S)π<sup>+</sup>, h<sub>b</sub>(1P)π<sup>+</sup>, h<sub>b</sub>(2P)π<sup>+</sup></mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | update of<br>arXiv:1105.4583, |
| Z <sub>b</sub> (10610)                   | M = 10607.2 $\pm$ 2.0 MeV<br>$\Gamma$ = 18.4 $\pm$ 2.4 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to be submitted to PRL        |
| Z <sub>b</sub> (10650)                   | M = 10652.2 ± 1.5 MeV<br>Γ = 11.5 ± 2.2 MeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |

Masses are close to BB\* and B\*B\* thresholds – molecule?

Angular analyses favour  $J^P = 1^+$ , decay pattern  $\Rightarrow I^G = 1^+$ 

#### arXiv:1105.4473

#### Heavy quark structure in Z<sub>b</sub>

Wave func. at large distance – free  $B(*)B^*$ 

$$\left|Z_{b}\right\rangle = \frac{1}{\sqrt{2}}\mathbf{0}_{bb}^{-}\otimes\mathbf{1}_{Qq}^{-} - \frac{1}{\sqrt{2}}\mathbf{1}_{bb}^{-}\otimes\mathbf{0}_{Qq}^{-}$$
$$\left|Z_{b}^{'}\right\rangle = \frac{1}{\sqrt{2}}\mathbf{0}_{bb}^{-}\otimes\mathbf{1}_{Qq}^{-} + \frac{1}{\sqrt{2}}\mathbf{1}_{bb}^{-}\otimes\mathbf{0}_{Qq}^{-}$$



#### Explains

- Why  ${\sf h}_b\pi\pi$  is unsuppressed relative to  $\Upsilon\pi\pi$
- Relative phase ~0 for Y and ~180<sup>0</sup> for  $h_b$
- Production rates of  $Z_b(10610)$  and  $Z_b(10650)$  are similar
- Widths –"

#### Predicts Existence of other similar states

#### **Description of fit to MM(** $\pi^+\pi^-$ **)**





BG: Chebyshev polynomial, 6<sup>th</sup> or 7<sup>th</sup> order Signal: shape is fixed from  $\mu^+\mu^-\pi^+\pi^-$  data "Residuals" – subtract polynomial from data points K<sub>S</sub> contribution: subtract bin-by-bin





#### Charmonia

#### $^{1}S_{\alpha}$ $^{3}P_{-}$ <sup>3</sup>P. $^{3}P_{-}$ <sup>1</sup>P. $^{3}D_{2}$ $^{3}D_{2}$ $^{3}D_{1}$ $^{1}D_{2}$ 5000 $e^+e^- \rightarrow X J/\psi \rightarrow D^*D^{(*)} J/\psi$ $\rightarrow \Lambda_{a}^{+}\Lambda_{a}^{-}\gamma_{\mu}$ 4750 4660 • 4630 ψ(4415) $\pi^+\pi^-\gamma_{ISR}$ 4500 Y(4320) 4360 160)<sub>w</sub>(4160) 4250 • Y(4260) 4250 $e^+e^- \rightarrow J/\psi' \pi^+\pi^- \gamma_{ISR}$ **,**'(3930) + DD 4010 4000 X(3872) DD X(3872) 3750 ψ(3770) 3500 $\chi_{c2}$ $\chi_{c1}$ $\square$ h $\chi_{c0}$ 3250 exp Theory 3000 🖝 J/w $\eta_c$ 2750 2500 $0^{-+}$ 1++ $2^{++}$ $0^{**}$ 1\* 3

#### M. Nielsen @ Charm2010



J=S+L n<sup>(2S+1)</sup>  $P=(-1)^{L+1}$  $C=(-1)^{L+S}$ 

- All charmonium states have been observed.
- Spectra are in good agreement with naïve quark model

$$V_{QCD} = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

- Above DD threshold; • **Observed States DO NOT** 
  - fit to the predicted spectrum.
  - Decay into  $D^{(*)}D^{(*)}$

Much more complicated.