

Electron Ion Collider (An Overview)

Precision study & understanding the role of gluons (& sea quarks) in QCD

http://arxiv.org/pdf/1108.1713v1

Abhay Deshpande October 21, 2011 Future Directions in High Energy QCD

QCD: The SM of Strong Interactions

"Folks, we need to stop "testing" QCD

and start <u>understanding</u> it"

Yuri Dokshitzer

1998, ICHEP Vancouver, BC , Conference Summary Talk

2004 For the discovery of asymptotic freedom in QCD

2

«ÉD»

Success of pQCD at High Q: Jet Cross section

STNY

BR

3

QCD definitely correct, but...

Lattice QCD

 Starting from QCD lagrangian → Static properties of hadrons: hadron mass spectrum

No guidance on partonic dynamics

Durr et al '08

Perturbative QCD

• Calculations possible in *when* coupling is small, at high Q

Problematic at low $Q \rightarrow$ fast rise of $\alpha_s(Q)$

Generation of Mass – Gluons in QCD

- Protons and neutrons form most of the mass of the visible universe
- 99% of the nucleon mass is due to self generated gluon fields
 - Similarity between p, n mass indicates that gluon dynamics is identical & overwhelmingly important

BR

• Lattice QCD supports this

Higgs Mechanism, often credited with mass generation, is of no consequence

Dynamical generation & self-regulation of hadron masses

F. Wilczek in "Origin of Mass"

Its enhanced coupling to soft radiation... means that a 'bare" color charge, inserted in to empty space will start to surround itself with a cloud of virtual color gluons. These color gluon fields themselves carry color charge, so they are sources of additional soft radiation. The result is a self-catalyzing enhancement that leads to a **runaway growth**. A small color charge, in isolation builds up a big color thundercloud....**theoretically the energy** of

the quark in isolation is infinite... having only a finite amount of energy to work with, nature always finds a way to short cut the ultimate thundercloud" Color charge

«ÉD»

What limits the "thundercloud"?

- Partial cancellation of quark-color-charge in color neutral finite size of the hadron (confinement) is responsible, *but*
- Saturation of gluon densities due to gg→ g (gluon recombination) must also play a critical role regulating the hadron mass

Need to experimentally explore and study *many body dynamics* a) regions of *quark-hadron transition* and b) non-linear QCD regions of extreme *high gluon density*

What is the role of gluons at high energy? HOW WELL DO WE UNDERSTAND GLUONS?

A. Deshpande, EIC Science and Project Overview

«ÉD.

Measurement of Glue at HERA

STONY BRONSK

A. Deshpande, EIC Science and Project Overview

10/21/11

Low-x, higher twist & Color Glass Condensate

McLerran, Venugopalan... See Review: F. Gelis et al., , arXiv:1002.0333)

Could be explored cleanly in future with a high energy electron-Nucleus Collider

A. Deshpande, EIC Science and Project Overview

10/21/11 10

EIC and RHIC/LHC (Heavy Ion)

A decadal plan is being launched to characterize the "QGP' To understand "QGP" fully, we need to understand: The initial state i.e. the nucleus & hadronization Deeper Connection: many body interactions of parton in QC

UNDERSTANDING **NUCLEON SPIN:** WHAT ROLE DO GLUONS PLAY?

A. Deshpande, EIC Science and Project Overview

Status of "Nucleon Spin Crisis Puzzle"

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta g + L_g$$

- We know how to determine $\Delta\Sigma$ and Δg precisely: data+pQCD
 - $-\frac{1}{2}(\Delta\Sigma) \sim 0.15$: From fixed target pol. DIS experiments
 - RHIC-Spin: ∆g not large as anticipated in the 1990s, but measurements & precision needed at low & high x

A. Deshpande, EIC Science and Project Overview

BR

$\Delta g(\mathbf{x}) \bigoplus_{\text{de Florian, Sassot, Stratmann & Vogelsang}} Q^2 = 10 \text{ GeV}^2$

Status of "Nucleon Spin Crisis Puzzle"

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \Delta g + L_g$$

- We know how to measure $\Delta\Sigma$ and ΔG precisely using pQCD
 - $\frac{1}{2} (\Delta \Sigma) \sim 0.15$: From fixed target pol. DIS experiments
 - RHIC-Spin: △G not large as anticipated in the 1990s, but measurements & precision needed at low & high x
- Generalized Parton Distributions: $H,E,E',H' \rightarrow Connection$ to partonic OAM
 - Quark GPDs $\rightarrow J_q$: 12GeV@JLab & COMPASS@CERN
 - Gluons @ low $x \rightarrow J_g \rightarrow$ will need the future EIC!
- (2+1)D tomographic image of the proton.... Transverse Mom. Distributions
 - 2: x,y position and +1:momentum in z direction

Towards Full understanding of transverse and longitudinal hadron structure including spin!

Unified View of Nucleon Structure

Do we really "understand" QCD?

While there is no reason to doubt QCD, our level of understanding of QCD remains extremely unsatisfactory: both at low & high energy

- Can we explain basic properties of hadrons such as mass and spin from the QCD degrees of freedom at low energy?
- What *are* the effective degrees of freedom at high energy?
- How do these degrees of freedom interact with each other and with other hard probes?
- What can we learn from them about confinement & universal features of the theory of QCD?

After ~20+ yrs of experimental & theoretical progress, we are only *beginning to understand* the many body dynamics of QCD

The Proposal:

Future DIS experiment at an Electron Ion Collider: A high energy, high luminosity (polarized) *ep* and eA collider and a suitably designed detector

Measurements: [1] → Inclusive [1] and [2] <u>or</u> [3] → Semi-Inclusiv [1] and [2] <u>and</u> [3] → Exclusive

Inclusive → Exclusive Low → High Luminosity Demanding Detector capabilities

Inclusive & Semi-Inclusive DIS

Semi-inclusive events:

 $e+p/A \rightarrow e'+h(\pi,K,p,jet)+X$ detect the scattered lepton in coincidence with identified hadrons/jets in the detector

EIC : Basic Parameters (e-p)

BR

- $E_e = 10 \text{ GeV}$ (5-30 GeV variable)
- $E_p = 250 \text{ GeV} (50-275 \text{ GeV Variable})$
- Sqrt(S_{ep}) = 100 (30-180) GeV
- $x_{min} \sim 10^{-4}$; $Q^2_{max} \sim 10^4 \text{ GeV}$
- Polarization ~ 70%: e,p, D/ 3 He
- Luminosity $L_{ep} = 10^{33-34} \text{ cm}^{-2}\text{s}^{-1}$
- Minimum Integrated luminosity:
 - 50 fb⁻¹ in 10 yrs (100 x HERA)
 - Possible with 10³³ cm⁻²s⁻¹
 - Recent projections much higher

EIC : Basic Parameters (e-A)

ST**(**)NY BR()\\\\K

- $E_e = 10 \text{ GeV}$ (5-30 GeV variable)
- E_A=100 GeV (20-110 GeV Variable)
- $Sqrt(S_{eA}) = 63 (20-115) GeV$
- $x_{\min} \sim 10^{-4}$;
- $Q^2_{max} \sim 8 \times 10^3 \text{ GeV}$

Nuclei:

• Proton \rightarrow Uranium

•
$$L_{eA}/N = 10^{33-34} \text{ cm}^{-2}\text{s}^{-1}$$

Machine Designs

eRHIC at Brookhaven National Laboratory using the existing RHIC complex

ELIC at Jefferson Laboratory using the Upgraded 12GeV CEBAF

Both planned to be STAGED

Staging of eRHIC: E_0 : 5 -> 30 GeV

ELIC: High Energy & Staging

R. Ent's Talk Emerging eRHIC Detector Concept

high acceptance $-5 < \eta < 5$ central detector good PID and vertex resolution (< 5µm) tracking and calorimeter coverage the same \rightarrow good momentum resolution, lepton PID low material density \rightarrow minimal multiple scattering and brems-strahlung very forward electron and proton detection \rightarrow maybe dipole spectrometers

STONY BROXK

Detector & IR Design: ELIC

Central detector

Detect particles with angles down to 0.5° before ion FFQs. Need 1-2 Tm dipole. Detect particles with angles below 0.5° beyond ion FFQs and in arcs.

_ Very-forward detector Large dipole bend @ 20 meter from IP

(to correct the 50 mr ion horizontal crossing angle) allows for very-small angle detection (<0.3°)

> JLab EIC WG and EIC Collaboration

R. Ent's Talk

EIC: the Machines, IR and Detector

Both BNL and JLab machine designs have progressed significantly. In spite of very different starting points for collider concepts:

- Both designs are now converging to similar luminosities:
 - Few x 10^{33-34} cm⁻² sec⁻¹ for high energy
 - $-\sim 5 \ge 10^{32-34} \text{ cm}^{-2} \text{ sec}^{-1}$ for low energy
 - Exchange of ideas over the last year very useful
- Both plan a staged realization
- Both designs have settled on more than one IR point
- Both machine designs integrate detector design in to the machine lattice
- Detectors concepts include a central solenoid and forward dipole, extensive low mass tracking for low x and good particle ID

A set of meetings on the Physics of EIC: 1999-2010 http://web.mit.edu/eicc/Meetings.html

A series of Users Workshops at Jefferson Lab in 2010: Users Workshops Organizer by the Users of Jeff Lab: httpp://michael.tunl.duke.edu/workshop httpp://www.physics.rutgers.edu/np/2010rueic-home.html http://www.phy.anl.gov/mep/EIC-NUC2010/ https://eic.jlab.org/wiki/index.php/Electroweak_Working_Group

An International Group met at the INT September – December 2010 to define: The Science of EIC "Golden Measurements" Institute of Nuclear Theory (INT) at U. of Washington: Sep-Nov 2010 Organizers: D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang See the INT WebPage for details of all studies: http://www.int.washington.edu/PROGRAMS/10-3/ INT Workshop Write-up: http://arxiv.org/abs/1108.1713

Science of EIC:

Precise Investigations of the "Glue & Sea Quarks"

- Precision measurements <u>of Sea Quarks and Gluon's Spin</u> via inclusive and semi-inclusive DIS including EW probes of the hadron structure Burkardt, Prokudin, Yuan
- Measurement of <u>(gluon)</u> GPDs & TMDs: via semi-inclusive and exclusive DIS → wide range in x and Q²
 - 3D momentum and position (correlations) of the nucleon
 - \rightarrow Possibly leading to orbital angular momentum

M. Burkardt, Prokudin

• Study <u>of extreme high gluon densities</u> via inclusive and seminclusive DIS off a wide range of nuclei and energies

K. Itakura, T. Ullrich, J. Qiu

• High energy, beam polarization, and a full acceptance detector: why not explore precision electroweak physics and EW (spin) structure functions

Nucleon Spin: Precision measurement of ΔG

Science of EIC:

Precise Investigations of the "Glue & Sea Quarks"

- Precision measurements <u>of Sea Quarks and Gluon's Spin</u> via inclusive and semi-inclusive DIS including EW probes of the hadron structure Burkardt, Prokudin, Yuan
- Measurement of <u>(gluon)</u> GPDs & TMDs: via semi-inclusive and exclusive DIS → wide range in x and Q²
 - 3D momentum and position (correlations) of the nucleon
 - \rightarrow Possibly leading to orbital angular momentum

M. Burkardt, Prokudin

• Study <u>of extreme high gluon densities</u> via inclusive and seminclusive DIS off a wide range of nuclei and energies

K. Itakura, T. Ullrich, J. Qiu

• High energy, beam polarization, and a full acceptance detector: why not explore precision electroweak physics and EW (spin) structure functions

«ÉD

EIC Luminosity vs. Time (Detector)

A. Deshpande, EIC Science and Project Overview

Science of EIC: Stage 1

- Nucleon (spin) structure
 - Precision measurements of ΔQ , ΔQ bar and ΔG via inclusive and semi-inclusive DIS
- Start the measurement of (gluon) GPDs & TMDs: 3D momentum and position (correlations) of the nucleon, possibly leading to orbital angular momentum(?)
- Start the study of extreme high gluon densities via inclusive and sem-inclusive DIS off a wide range of nuclei
- High energy, beam polarization, and a full acceptance detector: why not explore precision electroweak physics and EW (spin) structure functions?

EIC Project status and plans

- A "collaboration" of highly motivated people:
 - EIC Collaboration Web Page: <u>http://web.mit.edu/eicc/</u>
 - 100+ dedicated physicists from 20+ institutes
 - Task Forces at BNL (Aschenauer & Ullrich) and at Jefferson Laboratory (Ent)
 - Steering Committee (co-ordinators: A. Deshpande & R. Milner)
- EIC International Advisory Committee formed by the BNL & Jlab Management to steer this project to realization: <u>W. Henning (ANL/RIKEN, Chair)</u>, J. Bartels (DESY), A. Caldwell (MPI, Munich) A. De Roeck (CERN), R. Gerig (ANL), D. Hetrzog (U of W), X. Ji (Maryland), R. Klanner (Hamburg), A. Mueller (Columbia), S. Nagaitsev (FNAL), N. Saito (J-PARC), Robert Tribble (Texas A&M), U. Wienands (SLAC), V. Shiltev (FNAL)

A White for NSAC Long Range Plan 2012/2013 to be produced by early 2012

Writing Group: E; Aschenauer, M. Diehl, H. Gao, A. Hutton, T. Horn, K. Kumar, Y. Kovchegov, M. Ramsey-Musolf, T. Roser, F. Sabatie, E. Sichtermann, T. Ullrich, W. Vogelsang, F. Yuan

Senior Advisors: A. Mueller, R. Holt

RR

Co-Chairs/Editors: A. Deshpande, J. Qiu, Z.E. Meziani

A. Deshpande, EIC Science and Project Overview

Generic Detector R&D for an EIC

«€D

- Community wide call for R&D Detector proposals for EIC
- Program run from BNL (RHIC R&D funds), NOT site specific

New detector technology for fiber sampling calorimetry for EIC and STAR. UCLA, Texas A&M, Penn State Front end readout modules for data acquisition and trigger system. Jefferson Lab DIRC based PID for EIC Central Detector. Catholic U. of America, Old Dominion U., JLab, GSI (Darmstadt) Liquid scintillator calorimeter for the EIC. Ohio State U. Test of improved radiation tolerant silicon PMTs. Jefferson Lab Letter of Intent for detector R&D towards an EIC detector (Low mass tracking and PID). BNL, Florida Inst. Tech., Iowa State, LBNL, LANL, MIT, RBRC, Stony Brook, U. of Virginia, Yale U.

Seeds for possible future experimental collaboration.... Attracting new collaborators....

Next round of applications and updates requested in November, 2011

H. Montgomery, Jeff. Laboratory Director

EIC Realization Possible Time Line

Summary

Science Case for EIC: → "Understand QCD" via *"Precision study of the role of gluons & sea quarks in QCD"*

The Collaboration & the BNL+Jlab managements are moving <u>(together)</u> towards realization: *Milestoe: NSAC approval 2013*

 Machine R&D, detector discussions, simulation studies towards making the final case including detailed detector design and cost considerations

INVITATION: Ample opportunities to **get involved and influence** this exciting quest for understanding of QCD!

RIKEN's investment in RHIC has had a DISPROPORTIONATELY LARGE IMPACT on RHIC science: Understanding QCD: Experiment, Theory & Lattice QCD

EIC is the opportunity to do the same or better in the next decade

Physics Opportunities at the EIC

A. Deshpande, EIC Science and Project Overview

Electroweak & beyond....(?) BNL LDRD: Deshpande, Marciano, Kumar & Vogelsang

- High energy collisions of polarized electrons and protons and nuclei afford a unique opportunity to study electro-weak deep inelastic scattering
 - Electroweak structure functions (including spin)
 - Significant contributions from W and Z bosons which have different couplings with *quarks and anti-quarks*
- **Parity violating DIS**: a probe of beyond TeV scale physics
 - Measurements at higher Q² than the PV DIS 12 GeV at Jlab
 - Precision measurement of $Sin^2\Theta_W$
- New window for physics beyond SM?
 arXiv: 006.5063v1 [hep-ph]
 M. Gonderinger et al.
 - Lepton flavor violation search $e^- + p \rightarrow \tau^- + X$

EW Physics Highlights

Deviations from the curve may hint at existence of BSM scenarios including: Lepto-Quarks, RPV SUSY extensions, E_6/Z' based extensions of the SM

Electroweak CC and NC structure functions: access to spin properties of quarks and antiquarks over a wide x, Q² range.

BR

A Long Term (Evolving) Strategic View for RHIC

Golden Measurements (1)

Spin & flavor structure of the nucleon

Spin and flavor structure of the nucleon				
Deliverables	Observables What we learn		Requirements	
polarized gluon	scaling violations	gluon contribution	coverage down to $x \simeq 10^{-4}$;	
distribution Δg	in inclusive DIS	to proton spin	\mathcal{L} of about 10 fb ⁻¹	
polarized quark and	semi-incl. DIS for	quark contr. to proton spin;	similar to DIS;	
antiquark densities	pions and kaons	asym. like $\Delta \bar{u} - \Delta \bar{d}; \Delta s$	good particle ID	
novel electroweak	inclusive DIS	flavor separation	$\sqrt{s} \ge 100 \mathrm{GeV}; \mathcal{L} \ge 10 \mathrm{fb}^{-1}$	
spin structure functions	at high Q^2	at medium x and large Q^2	positrons; polarized 3 He beam	

Golden Measurements (2): TMDs & GPDs of nucleons & nuclei

Three-dimensional structure of the nucleon and nuclei: transverse momentum dependence				
Deliverables	Observables	What we learn	Phase I	Phase II
Sivers and	SIDIS with transv.	quantum interference	valence+sea	3D Imaging of
unpolarized	polarization/ions;	multi-parton and	quarks, overlap	quarks and gluon;
TMDs for	di-hadron (di-jet)	spin-orbit	with fixed target	$Q^2 (P_{\perp})$ range
quarks and gluon	heavy flavors	correlations	experiments	QCD dynamics

Three-dimensional structure of the nucleon and nuclei: spatial imaging				
Deliverables	Observables	What we learn	Requirements	
sea quark and	DVCS and $J/\psi, \rho, \phi$	transverse images of	$\mathcal{L} \ge 10^{34} \text{ cm}^{-2} \text{s}^{-1},$	
gluon GPDs	production cross sect.	sea quarks and gluons	Roman Pots	
	and asymmetries	in nucleon and nuclei;	wide range of x_B and Q^2	
		total angular momentum;	polarized e^- and p beams	
		onset of saturation	e^+ beam for DVCS	

Golden Measurement (3):

QCD matter in Nuclei

QCD matter in nuclei				
Deliverables	Observables	What we learn	Phase I	Phase II
integrated gluon distributions	$F_{2,L}$	nuclear wave function; saturation, Q_s	gluons at $10^{-3} \le x \le 1$	explore sat. regime
k_T -dep. gluons;	di-hadron	non-linear QCD	onset of	RG evolution
gluon correlations	correlations	evolution/universality	saturation; Q_s	
transp. coefficients	large- x SIDIS;	parton energy loss,	light flavors, charm	precision rare
in cold matter	\mathbf{jets}	shower evolution;	bottom; jets	probes;
		energy loss mech.		large- x gluons

Golden Measurements (4): EW interactions & BSM

Electroweak interactions and physics beyond the Standard Model				
Deliverables	Observables	What we learn	Phase I	Phase II
Weak mixing	Parity violating	physics behind electroweak	good precision	high precision
angle	asymmetries in	symmetry breaking	over limited	over wide range
	ep- and ed -DIS	and BSM physics	range of scales	of scales
e - τ conversion	$ep \to \tau, X$	flavour violation	challenging	very promising
		induced by BSM physics		

My Cartoon ! sPHENIX \rightarrow ePHENIX \rightarrow eRHIC

47

Some thought about rates

1.9 2