

e+A Experiments at an Electron Ion Collider

Thomas Ullrich RIKEN/RBRC Workshop on Future Directions in High Energy QCD

October 22, 2011

precision (\Rightarrow HERA)

2

pQCD and DGLAP & BFKL evolution works with high precision (\Rightarrow HERA)

HERA taught us that glue dominates for x < 0.1

However DGLAP & BFKL evolution have their limits

Х

However DGLAP & BFKL evolution have their limits

Issue: To what Q² is pQCD applicable?

However DGLAP & BFKL evolution have their limits

Hints at low-Q² that things are not in order

• xG(x,Q²) < 0 (OK in NLO)

New Approach: Non-Linear Evolution

- McLerran-Venugopalan Model:
 - Weak coupling description of wave function
 - Gluon field A_µ~1/g ⇒ gluon fields are strong classical fields!
- BK/JIMWLK: non-linear effects ⇒ saturation characterized by Q_s(x)
- Wave function is Color Glass Condensate in IMF description

x < 0.01

 10^{-1}

10⁻¹

Geometric scaling predicted by nonlinear JIMWLK/BK evolution equations (lancu, Itakura, McLerran '02)

 10^{3}

 10^{2}

 $\tau = Q^2/Q_s^2(x)$

10

Q_S: Matter of Definition and Frame (I)

Rest frame of hadron:

- qq dipole (Mueller dipole)
- DGLAP: $\sigma_{qq} \propto r^2 \alpha_s(\mu^2) x G(x,\mu^2)$
 - explodes with r^2
 - violates unitarity
- Saturation: $\sigma_{qq} \propto 1 \exp(-r^2 \alpha_s(\mu^2) x G(x, \mu^2))$

Common definition:
$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = 2\mathcal{N}$$

 $\mathcal{N}(x_{\perp} = 1/Q_S, Y) = 1 - e^{-1/4}$
 $\mathcal{N}(x_{\perp} = 1/Q_S, Y) = 1 - e^{-1/2}$
 $\mathcal{N}(x_{\perp} = 1/Q_S, Y) = 1/2$
Important: universality of λ =dln Q_S /d Y

е

Ωُ

Q_S: Matter of Definition and Frame (II)

Infinite Momentum Frame:

BFKL (linear QCD): splitting functions ⇒ gluon density grows

Q_S: Matter of Definition and Frame (II)

Infinite Momentum Frame:

- BFKL (linear QCD): splitting functions \Rightarrow gluon density grows
- BK (non-linear): recombination of gluons \Rightarrow gluon density tamed

Q_S: Matter of Definition and Frame (II)

Infinite Momentum Frame:

- BFKL (linear QCD): splitting functions \Rightarrow gluon density grows
- BK (non-linear): recombination of gluons \Rightarrow gluon density tamed

• At Q_s: gluon emission balanced by recombination

Unintegrated gluon distribution depends on k_T and x: the majority of gluons have transverse momentum $k_T \sim Q_S$ (common definition)

HERA (ep):

Despite high energy range:

- F₂, G_p(x, Q²) outside the saturation regime
- Need also Q² lever arm!
- Only way in ep is to increase √s
- Would require an ep collider at √s ~ 1-2 TeV

HERA (ep):

Despite high energy range:

- F₂, G_p(x, Q²) outside the saturation regime
- Need also Q² lever arm!
- Only way in ep is to increase √s
- Would require an ep collider at √s ~ 1-2 TeV

HERA (ep):

Despite high energy range:

- F₂, G_p(x, Q²) outside the saturation regime
- Need also Q² lever arm!
- Only way in ep is to increase √s
- Would require an ep collider at √s ~ 1-2 TeV
- Different approach (eA):

$$(Q_s^A)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

$$L \sim (2m_N x)^{-1} > 2 R_A \sim A^{1/3}$$

Probe interacts *coherently* with all nucleons

HERA (ep):

Despite high energy range:

- F₂, G_p(x, Q²) outside the saturation regime
- Need also Q² lever arm!
- Only way in ep is to increase √s
- Would require an ep collider at √s ~ 1-2 TeV
- Different approach (eA):

$$(Q_s^A)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Enhancement of Q_s with A \Rightarrow saturation regime reached at significantly lower energy in nuclei

EIC: The e+A Physics Program

Investigate with precision the universal dynamics of gluons

Central Topics:

- Study the Physics of Strong Color Fields
 - Establish the existence of the saturation regime
 - Investigate the *dynamics* of this regime
- How do fast probes interact with the gluonic medium?
 - Energy loss, Fragmentation processes
- Study the nature of color singlet excitations (Pomerons)
- What's the role in gluons in the nuclear structure?

e+A Physics Program: Science Matrix

Result of INT workshop in Seattle in fall '10 (arXiv: 1108.1713)

Deliverables	Observables	What we learn	Phase-I	Phase-II
integrated gluon distributions	F _{2,L}	nuclear wave function; saturation, Q _s	gluons at 10 ⁻³ < x < 1	saturation regime
k⊤ dependent gluons; gluon correlations	di-hadron correlations	non-linear QCD evolution / universality	onset of saturation	measure Q _s
transport coefficients in cold matter	large-x SIDIS; jets	parton energy loss, shower evolution; energy loss mechanisms	light flavors and charm; jets	rare probes and bottom; large-x gluons

e+A Physics Program: Science Matrix

Result of INT workshop in Seattle in fall '10 (arXiv: 1108.1713)

Deliverables	Observables	What we learn	Phase-I	Phase-II
integrated gluon distributions	F _{2,L}	nuclear wave function; saturation, Q _s	gluons at 10 ⁻³ < x < 1	saturation regime
k⊤ dependent gluons; gluon correlations	di-hadron correlations	non-linear QCD evolution / universality	onset of saturation	measure Q _s
transport coefficients in cold matter	large-x SIDIS; jets	parton energy loss, shower evolution; energy loss mechanisms	light flavors and charm; jets	rare probes and bottom; large-x gluons
b dependence of gluon distribution and correlations	Diffractive VM production and DVCS, coherent and incoherent parts	Interplay between small-x evolution and confinement	Moderate x with light and heavy nuclei	Extend to low-x range (saturation region)

Example 1: F_L Structure Function

J. Bartels, K. Golec-Biernat and L. Motyka, '11 (based on IPSat Model)

J. Bartels, K. Golec-Biernat and L. Motyka, '11 (based on IPSat Model)

J. Bartels, K. Golec-Biernat and L. Motyka, '11 (based on IPSat Model)

J. Bartels, K. Golec-Biernat and L. Motyka, '11 (based on IPSat Model) pQCD: higher twist *O*(1/Q²) Very different in saturation models!

First (Last) F_L Measurement at HERA

HERA in 2007 (last run) run at different energies enabling the first solid measurement of $F_{\rm L}$ in ep

• E_p = 920, 575, 460 GeV

Here H1: 1.5 < Q²/GeV < 120 2.9 · 10⁻⁵ < x < 0.01

> Aaron et al., Eur. Phys. J.C71 1579

First (Last) F_L Measurement at HERA

HERA in 2007 (last run) run at different energies enabling the first solid measurement of $F_{\rm L}$ in ep

• E_p = 920, 575, 460 GeV

Uncertainties (sys and stat) too large to distinguish unambiguously between models

Measuring F_{L} with the EIC (I)

$$\frac{d^2 \sigma^{e_p \to e_X}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$
quark+anti-quark

momentum distributions

gluon momentum distribution

Measuring F_{L} with the EIC (I)

$$\frac{d^{2}\sigma^{ep \rightarrow eX}}{dxdQ^{2}} = \frac{4\pi\alpha_{e.m.}^{2}}{xQ^{4}} \left[\left(1 - y + \frac{y^{2}}{2} \right) F_{2}(x,Q^{2}) - \frac{y^{2}}{2} F_{L}(x,Q^{2}) \right]$$
quark+anti-quark
momentum distributions
gluon momentum
distribution

In practice use reduced cross-section:

$$\sigma_r = \left(\frac{d^2\sigma}{dxdQ^2}\right) \frac{xQ^4}{2\pi\alpha^2[1+(1-y)^2]} = F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2}F_L(x,Q^2)$$
$$= F_2(x,Q^2) - \frac{y^2}{Y^+}F_L(x,Q^2)$$

Measuring F_{L} with the EIC (I)

$$\frac{d^{2}\sigma^{ep \rightarrow eX}}{dxdQ^{2}} = \frac{4\pi\alpha_{e.m.}^{2}}{xQ^{4}} \left[\left(1 - y + \frac{y^{2}}{2} \right) F_{2}(x,Q^{2}) - \frac{y^{2}}{2} F_{L}(x,Q^{2}) \right]$$
quark+anti-quark
momentum distributions
gluon momentum
distribution

In practice use reduced cross-section:

$$\sigma_r = \left(\frac{d^2\sigma}{dxdQ^2}\right) \frac{xQ^4}{2\pi\alpha^2[1+(1-y)^2]} = F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2}F_L(x,Q^2)$$
$$= F_2(x,Q^2) - \frac{y^2}{Y^+}F_L(x,Q^2)$$

How to extract FL

- Need different values of y²/Y⁺
- F_L slope of σ_r vs y²/Y⁺
- F_2 intercept of σ_r vs y²/Y⁺ with y-axis

Measuring F_L with the EIC (II)

In order to extract F_L one needs at least two measurements of the inclusive cross section with "wide" span in inelasticity parameter **y** ($Q^2 = sxy$)

 F_L runs at various $\sqrt{s} \Rightarrow$ longer program

Need sufficient lever arm in y^2/Y^+

Limits on y²/Y⁺: At small y: detector resolution for e' At large y: radiative corrections and charge symmetric background

Measuring F_L with the EIC (II)

In order to extract F_L one needs at least two measurements of the inclusive cross section with "wide" span in inelasticity parameter **y** ($Q^2 = sxy$)

 F_L runs at various $\sqrt{s} \Rightarrow$ longer program

Need sufficient lever arm in y^2/Y^+

Limits on y²/Y⁺: At small y: detector resolution for e' At large y: radiative corrections and charge symmetric background

Issue for e+A: Radiative corrections

Emission of real photons

 experimentally often not distinguished from non-radiative processes: soft photons, collinear photons

Distortion of observed structure function: $F_i^{\text{obs}}(x_B, Q^2) = \int d\tilde{x}_B d\tilde{Q}^2 R_i(x_B, Q^2, \tilde{x}_B, \tilde{Q}^2) F_i^{\text{true}}(\tilde{x}_B, \tilde{Q}^2)$ Radiator functions $R_i(l, l', k)$

Effect of radiative corrections

Effect of radiative corrections

First Studies: Extraction of F_2 and F_L

F_{2,L} extracted from pseudo-data generated for 1 month running at 3 EIC (eRHIC) energies (here ep)

- 5+100 GeV
- 5+250 GeV
- 5+325 GeV

Data points added to theoretical expectations from ABKM09 PDF set to indicate stat. errors

valid for Q² > 2.5 GeV²

Example 2: Dihadron Correlations

h-h Mid-Rapidity Correlation in pA at RHIC

- d+Au h-h correlations: near and away side are p+p like
- helped to establish that away side suppression in Au+Au is a final state effect
- What happens at forward rapidities?
 - x_{1,2} ≈ m_T/√s exp(±η)

h-h Forward Correlation in pA at RHIC

Low gluon density (pp): pQCD predicts 2→2 process

 \Rightarrow back-to-back di-jet

h-h Forward Correlation in pA at RHIC

Low gluon density (pp): pQCD predicts $2\rightarrow 2$ process \Rightarrow back-to-back di-jet

21

h-h Forward Correlation in pA at RHIC

Low gluon density (pp): pQCD predicts $2\rightarrow 2$ process \Rightarrow back-to-back di-jet High gluon density (pA):

- 2→many process
- \Rightarrow expect broadening of away-side
- Small-x evolution ↔ multiple emissions
- Multiple emissions \rightarrow broadening
- Back-to-back jets (here leading hadrons) may get broadening in p_T with a spread of the order of Q_S

First prediction by: C. Marquet ('07) Latest review: Stasto, Xiao, Yuan arXiv:1109.1817 (Sep. '11)

$\pi^0 - \pi^0$ Forward Correlation in pA at RHIC

- Striking broadening in central dAu of away-side compared to pp and peripheral dAu
- Robust CGC result difficult to reproduce in DGLAP
- x range: x ~ 10⁻³

Dihadron Correlations: a Theorist's View

- Prediction: factor ~2 suppression at EIC energies
- At small x, multi-gluon distributions are as important as singlegluon distributions
- Test of universality: p+A and e+A are sensitive to "dipole" and "quadrupole" operators which (same for both processes)

Simulations using DPMJet-III generator: no suppression but leading twist shadowing

E_e=30 GeV E_{Au}=100 GeV/n Statistics ≈7 EIC min

Liang Zheng (Wuhan/BNL)

E_e=30 GeV E_{Au}=100 GeV/n Statistics ≈7 EIC min

Simulations using DPMJet-III generator: no suppression but leading twist shadowing E_e=30 GeV E_{Au}=100 GeV/n Statistics ≈7 EIC min

Liang Zheng (Wuhan/BNL)

Simulations using DPMJet-III generator: no suppression but leading twist shadowing E_e=30 GeV E_{Au}=100 GeV/n Statistics ≈7 EIC min

Liang Zheng (Wuhan/BNL)

What if suppression is small? How sensitive are we?

- Use realistic detector simulations
- Assume 30% suppression only
- Based on statistics equivalent to 7 min EIC running

- Even with small statistics: straight forward measurement that is sensitive to at least 30% suppression
- True "golden" measurement

Example 3: Diffractive Physics

A DIS event (theoretical view)

A DIS event (experimental view)

A DIS event (experimental view)

A diffractive event (experimental view)

A diffractive event (theoretical view)

Hard Diffraction in DIS at Small x

- Diffraction in e+p:
 - ▶ coherent ⇔ p intact
 - incoherent ⇔ breakup of p
 - HERA: 15% of all events are hard diffractive

Diffraction in e+A:

- coherent diffraction (nuclei intact)
- breakup into nucleons (nucleons intact)
- incoherent diffraction
- Predictions: $\sigma_{diff}/\sigma_{tot}$ in e+A ~25-40%

Hard Diffraction in DIS at Small x

• Diffraction in e+p:

- ▶ coherent ⇔ p intact
- incoherent ⇔ breakup of p
- HERA: 15% of all events are hard diffractive

- Diffraction in e+A:
 - coherent diffraction (nuclei intact)
 - breakup into nucleons (nucleons intact)
 - incoherent diffraction
 - > Predictions: $\sigma_{diff}/\sigma_{tot}$ in e+A ~25-40%

Hard Diffraction in DIS at Small x

- Diffraction in e+p:
 - ▶ coherent ⇔ p intact
 - incoherent ⇔ breakup of p
 - HERA: 15% of all events are hard diffractive

- Diffraction in e+A:
 - coherent diffraction (nuclei intact)
 - breakup into nucleons (nucleons intact)
 - incoherent diffraction
 - > Predictions: $\sigma_{diff}/\sigma_{tot}$ in e+A ~25-40%

Why Is Diffraction So Important?

Sensitive to gluon momentum distribution

$$\frac{d\sigma^{\gamma^* p \to pV}}{dt} \sim \left| \int \Psi_V^* \frac{d\sigma_{q\bar{q}}}{d^2 b} \Psi e^{-ib\Delta} \right|^2$$
$$\frac{d\sigma_{q\bar{q}}}{d^2 \vec{b}} \sim r^2 \alpha_s x g(x, \mu^2) T(b)$$
$$\bullet \sigma \propto g(\mathbf{x}, \mathbf{Q}^2)^2$$

- Sensitive to spatial gluon distribution
 - $\frac{d\sigma}{dt}$ = Fourier Transformation
 - $^{lpha t}$ of Source Density $ho_{ extsf{g}}(extsf{b})$
 - Hot topic:
 - Gluonic form factor
 - just Wood-Saxon + nucleon g(b)
 - Incoherent case: measure of fluctuation/ lumpiness in G_A(b)

Why Is Diffraction So Difficult?

- Key in identifying diffraction is rapidity gap
 - requires hermetic detector
 - does not allow separation of coherent from incoherent
- Measuring the scattered nucleus with Forward Spectrometer (Roman Pots)
 - Coherent ⇒ cannot separate from beam
 - incoherent ⇒ cannot reconstruct all fragments to get p'

• Cannot measure *t* in eA except in exclusive vector meson production, e.g.:

 $e + A \rightarrow e' + J/\psi + A'$

 Lack of t not a big issue for measurements of F2^D, FL^D and hence G(x,Q²)

Large Rapidity Gap Method (LRG)

- Identify Most Forward Going Particle (MFP)
 - Works at HERA but at higher \sqrt{s}
 - EIC smaller beam rapidities

Hermeticity requirement:

- needs just to detector presence
- does not need momentum or PID
- simulations: √s not a show stopper for EIC (can achieve 1% contamination, 80% efficiency)

Diffractive ρ^{0} production at EIC: η of MFP

M. Lamont '10

Exclusive Vector Meson Production

Golden channel: e + A → e' + A' + VM

- $t = (P_A P_{A'})^2 = (P_{VM} + P_{e'} P_{e})^2$
- ▶ photoproduction ($Q^2 \approx 0$): $t \approx p^2_{T,VM}$
- moderate Q²: need p_T of e'
- Issues:
 - transverse spread of the beam (distorts small t) \Rightarrow requires beam cooling
 - detect incoherent events \Rightarrow detect nuclear breakup

 $\rho, \phi, J/\psi, \mathrm{DVCS}$

 r_{\bullet}^{\bullet}

 $-\mathbf{q}^2$

Detecting Nuclear Breakup

- Detecting all fragments p_{A'} = ∑p_n + ∑p_p + ∑p_d + ∑p_α ... not possible
- Focus on n emission
 - Zero-Degree Calorimeter
 - Requires careful design of IR
- Traditional modeling done in pA:
- Intra-Nuclear Cascade
 - Particle production
 - Remnant Nucleus (A, Z, E*, ...)
 - ISABEL, INCL4
- **De-Excitation**
 - Evaporation
 - Fission
 - Residual Nuclei
 - Gemini++, SMM, ABLA (all no γ)

- Additional measurements:
 - Fragments via Roman Pots
 - γ via EMC

Experimental Reality

Here eRHIC IR layout:

Need ±X mrad opening through triplet for *n* and room for ZDC

Big questions:

- Excitation energy E*?
- ep: dσ/M_Y ~ 1/M_Y²

• eA? Assume ep and use E* = M_Y - m_p as lower limit

Experimental Reality

Here eRHIC IR layout:

Need ±X mrad opening through triplet for *n* and room for ZDC

Big questions:

- Excitation energy E*?
- ep: $d\sigma/M_{Y} \sim 1/M_{Y}^{2}$

Simulations using Gemini++ & SMM show it works:

- For E^{*}tot ≥ 10 MeV and 2.5 mrad n acceptance we have rejection power of at least 10⁵.
- Separating incoherent from coherent diffractive events is possible at a collider with *n*-detection via ZDCs alone

Example 4: Properties of Cold Nuclear Matter

Parton Propagation and Fragmentation

Hadronization not well understood non-perturbative process

- Nuclei as space-time analyzer
- EIC can measure:
 - fragmentation time scales to understand dynamic
 - in medium energy loss to characterize medium
- Observables
 - ▶ p⊤ distribution broadening

$$\Delta P_T^2 = \langle P_T^2 \rangle_A - \langle P_T^2 \rangle_D$$

$$R_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T}) = \frac{N_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{A}^{e}(Q^{2}, x_{Bj})}{N_{D}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{D}^{e}(Q^{2}, x_{Bj})}$$

see talk by Jianwei Qiu

Hadron Attenuation in nDIS

Energy loss:

- gluon bremstrahlung?
 - hadronization outside media
- prehadron absorption?
 - color neutralization inside the medium

Energy transfer in lab rest frame HERMES: v = 2-25 GeV EIC: 10 < v < 1600 GeV (LHC range) EIC: *heavy flavor*!

Hadron Attenuation in nDIS

Energy loss:

- gluon bremstrahlung?
 - hadronization outside media
- prehadron absorption?
 - color neutralization inside the medium

Energy transfer in lab rest frame HERMES: v = 2-25 GeV EIC: 10 < v < 1600 GeV (LHC range) EIC: *heavy flavor*!

> z, v dependence to be taken into account

p_⊤ Broadening in nDIS

- Δp_T^2 directly linked to saturation scale e.g. BDMPS, Kopeliovich '10
- Δp_T^2 of jets as direct measurement of \hat{q}
 - z, v dependence to be taken into account

EIC: large Q² coverage to detect modifications in DGLAP evolution
Summary

The e+A program at an EIC is unprecedented, allowing the study of matter in a new regime where physics is not described by "ordinary" QCD

- set of key (aka golden or killer) measurements identified
- studies underway to establish their feasibility with realistic detectors and machine parameters.

The e+A program is also a challenge experimentally

- new difficulties compared to e+p
- measurements never conducted in a collider
- so far found no show-stopper for key measurements
- most key measurements are energy (\sqrt{s}) hungry ...
- ... but less luminosity demanding