Spin Physics at RHIC

Kieran Boyle (RBRC)

Outine

- Proton structure
 - Overview
 - Spin: helicity and transverse
- RHIC and the experiments
- Helicity:
 - Helicity sum rule
 - Knowledge of ΔG prior to RHIC
 - Accessing ΔG in p+p collisions: A_{LL}
 - Results
 - Impact in global analysis
 - Future plans
- Transverse:
 - Motivation: large Single Spin Asymmetries (SSA) in p+p
 - Theory: Transversity and \boldsymbol{k}_{T} dependent functions
 - Measurements at RHIC and in DIS
 - Future plans
- Conclusions

- The nucleon is a composite particle, made up of quarks and gluons
- Properties of the proton arise from properties of the constituents
 - Quark Content: $2 = u_{valence} = \int_0^1 dx [u(x) \bar{u}(x)]$

- The nucleon is a composite particle, made up of quarks and gluons
- Properties of the proton arise from properties of the constituents
 - Quark Content: $2 = u_{valence} = \int_0^1 dx [u(x) \bar{u}(x)]$

- Properties of the proton arise from properties of the constituents
 - Momentum:

$$1
eq \sum_q \int_0^1 x dx [q(x)+ar q(x)]$$

- Properties of the proton arise from properties of the constituents
 - Momentum:

- S $1 = \sum_{q} \int_{0}^{1} x dx [q(x) + \bar{q}(x)] + \int_{0}^{1} x dx g(x)$
- Knowledge of the gluon PDF comes primarily from scaling violation in DIS measurements, accessible due to large range of x and Q²

Spin Structure

- How correlated are the parton spins with parent nuclei?
 - As boosts and rotations do not commute, we must answer this for the helicity and transverse spin cases independently
- <u>Helicity:</u>
 - Initially expected quarks to be highly correlated, carrying ~60% of proton spin
 - From polarized DIS results, quarks only carry ${\sim}30\%$
 - Is the rest carried by gluons? Or OAM?
- <u>Transverse:</u>

10/20/201

- pQCD hard scattering asymmetries are small, and so assumed small transverse spin asymmetries
- Instead found very large (~60%) single spin asymmetries (SSA) at low $\sqrt{\ s}$
- What is the source? Correlations with partonic tranverse momentum $(k_{\rm T})$? Initial state or final state effects?

≠

THE EXPERIMENTS

11119

RHIC

- Collides polarized protons at $\sqrt{s}=62.4$, 200 and 500 GeV
- Stable spin orientation is vertical
 - Only transversely polarized p+p at BRAHMS, AnDY
 - Spin rotators at PHENIX and STAR allow longitudinally polarized p+p
- Achieved 60% (45%) polarization at \sqrt{s} =200 (500) GeV

Experiments

10/20/2011

Research Center

HELICITY STRUCTURE

Kieran Boyle

24

Helicity Sum Rule*

While $\Delta\Sigma$ is well constrainted from pDIS, Δq for the different quarks are less well know, especially in the case of sea quarks:

$$=\frac{1}{2}=\frac{1}{2}DS+DG+L_{q}+$$

$$DG = \int_{0}^{1} dx Dg(x)$$
$$= \int_{0}^{1} dx \left[g^{+}(x) - g^{-}(x) \right]$$

10/20/2011

Does ∆G carry the remainder of the missing spin?

Not clear how to measure

Helicity Structure of the Nucleon

- As in unpolarized case, use DIS to understand the quark structure → ΔΣ
- For G(x), using scaling violations
 - Requires large x and Q² coverage
- For the gluon spin constribution, ∆G, current fixed target data are not enough

Research Cente

10/20/2011

Accessing ΔG in p+p: A_{LL}

- Collide longitudinally polarized protons
 - Probe gluon at LO in α_{s}
- Procedure:
 - 1. Check that unpolarized cross section is described by pQCD
 - 2. Measure production asymmetry, $A_{\text{LL}},$ in specified final state
 - Ex: π^0 , π^{\pm} , Jets, dijets (di-hadrons), direct photons
 - 3. Extract ∆G in global analysis of polarized DIS, Semi Inclusive DIS (SIDIS) and p+p data

Why A_{LL}?

- If $\Delta f = \Delta q$, then we have this from pDIS
- So roughly, we have:

$$A_{LL} \cong a_{gg}\Delta g^2 + b_{gq}\Delta g\Delta q + c_{qq}\Delta q^2$$

where a, b, c depend on kinematics and probe +- =

++ =

Step One: pQCD Describes Data

Step Two: Measure A_{II}

Step Three: Constraining ΔG

+DIS

+SIDIS

- DSSV fit world date including p+p for first time.
- PRL101:072001, 2008
- PRD 80:034030, 2009
- RHIC data offer significant constraint at 0.05<x<0.2.
- Large uncertainty remains below RHIC x range.
- 1.5 times more data from 2009.

Better Determination of ΔG

- Extention of DSSV underway:
 - Theorists (D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang)
 - Experimentalist (C. Gal, S. Taneja, KB, A. Deshpande)
 - Inclusion of Run 9 π^0 and jet A_{LL}
 - Inclusion of dijet and other hadron A_{LL} and W A_{L} data
 - Proper treatment of all experimental systematic uncertainties

Better Determination of ΔG

- Extention of DSSV underway:
 - Theorists (D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang)
 - Experimentalist (C. Gal, S. Taneja, KB, A. Deshpande)
 - Inclusion of Run 9 π^0 and jet A_{LL}

-0.1

0.001

0.01

X

0.1

- Inclusion of dijet and other hadron A_{LL} and W A_{L} data
- Proper treatment of all experimental systematic uncertainties
- More refined ~f es on polarized PDFs Best Fit DG=0.01 Dchi2 =1 DG=0.16 Best Fit DG=0.08 Dchi2 =1 DG=0.20 **Recently released** 0.05 0.05 STAR jet result is Impact or ne also being added. X DeltaG X DeltaG Both Run9 data sets indicate -0.05 -0.05 larger ΔG

-0.1

0.001

0.01

x

0.1

Kieran Boyle

Limitations of Current Data

- Current mid-rapidity inclusive measurements (π⁰, jet, etc.) at √s=200 GeV have two draw backs
 - They cover a limited range in x (approx. 0.02<x<0.3)
 - Each \textbf{p}_{T} bin integrates over a wide range in x
- We can extend x range by
 - Measuring at larger rapidity (low x gluon)
 - Measuring at larger $\sqrt{\ s}$ (smaller x at same $p_{\rm T})$
- We can more precisely determine x through correlation measurements
- And we can do both

10/20/2011

$$x_{1} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{h_{3}} + p_{T4} e^{h_{4}} \right)$$
$$x_{2} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{-h_{3}} + p_{T4} e^{-h_{4}} \right)$$

Future plans

• More precise determination of $\Delta G(x)$ over wider range in x Higher x Central Forward Lower x

Research Center

22

TRANSVERSE SPIN

Basic Idea of Measurements

• Recall:

- Measure angular production dependence
 - Angle in a specific plane with respect to a specific vector
 - Easy examples:
 - φ dependent particle production in plane transverse to proton momentum, i.e., Left-Right Asymmetry

$p^{\hat{v}}+p \rightarrow h^{\pm} SSA$

- Large asymmetries seen over large range in √s, including RHIC energies
- Hard scattering process expected to only have very small asymmetries
- → Effect is initial or final state effect

10/20/2011

Possible explanations

- Initial State:
 - Transversity
 - Correlation between proton and quark spin
 - Chiral-Odd, so must couple with another Chiral-Odd function
 - Does not generate L-R asymmetries by itself
 - Sivers
 - Correlation between proton spin and parton $k_{\rm T}.$
 - Could generate L-R asymmetries
- Final State

10/20/201

- Collins
 - Correlation between scattered quark spin and fragmenting hadron k_T.
 - Chiral-Odd
 - Coupled with transversity could generate L-R asymmetries

Proton spin and quark spin correlation

Quark spin and hadron k_T correlation

Methods to extract each

- Collins FF from e⁺e⁻ (Belle)
 - M. Gross-Perdekamp, R. Seidl
 - Collin's Effect (FF)

Quark spin and hadron k_T correlation

10/20/201

 Collins×transversity from SIDIS (Hermes, Compass)

Methods to extract each

• Sivers function from SIDIS (Hermes, Compass)

Back to RHIC

- At RHIC, we have measured forward SSA for many hadrons
 - $-\pi^{0}, \pi^{\pm}, K, p, \eta$

10/20/201

Research Center

Understanding p_T Dependence

- Trend in A_N data described by theory,
- But when look deeper, indications that all is not well understood
 - Expected fall off at high p_T not yet seen

• STAR and PHENIX pushing to high p_T

10/20/201

Research Cente

Future plans

- Several short and long term approaches to understand transverse spin phenomena in p+p
 - Near term (R. Seidl)
 - Plan to understand these different effects with the current PHENIX detector (and smaller upgrades) over the next few years
 - Longer term (I. Nakagawa)
 - Plans for the sPHENIX upgrade and how Drell-Yan measurements at RHIC can help us understand universality of TMDs
 - The sPHENIX detector can also be used to finally understand the mechanism generating the large A_N by seperately measuring the iet asymmetry and the asymmetry of a hadron in a jet

Conclusions

- The nucleon spin structure is a rich subject to study
- <u>Helicity</u>
 - Measurements of the double helicity asymmetry ${\rm A}_{\rm LL}$ directly access the gluon helicity
 - RHIC measurements have significantly constrained the ΔG
 - Over next few years,
 - Extend knowledge of ΔG to lower x by measuring a $\sqrt{\mbox{ s=500 GeV}}$ and at large η
 - Better determination of $\Delta G(x)$ through correlation measurements
- <u>Transverse</u>
 - Initial measurements in p+p saw surprisingly large asymmetries
 - Measurements at RICH and in SIDIS are trying to disentangle the source
 - Planning to make measurements at RHIC to measure Sivers and Collins separately
- Much more about future plans from R. Seidl and I. Nakagawa

Thank You

Another Route to Transversity

- Interference Fragmentation Function (IFF)
 - Measured at BELLE
 - Collinear (no k_T dependence)
 - Correlates quark spin with produced hadron pair angular momentum
- At PHENIX, couples with transversity
 - Initial data do not have needed sensitivity
 - Expected data in next few year will be precise enough

