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Theory

Overview

A typical PHENIX planning meefting...

“Now that RHIC has found the Perfect Fluid,
what do we meditate on next?”
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Overview

® The Liquid QGP
Transport coefficients
Fluctuations
Equation of state

B The Opaque QGP
Quark energy loss
Jet quenching
Color screening

A typical PHENIX planning meefting...
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“Now that RHIC has found the Perfect Fluid,
what do we meditate on next?

Susceptibilities
Critical region
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QCD Phase Diagram
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The Big Questions

BNL's version of
the Perfect Liquid
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The Big Questions

Theory

BNL's version of
the Perfect Liquid

A=2% &
HORIoH M

HELIZNE
»n

Shiseido’s version of
the Perfect Liquid

What makes for a Perfect Liquid ?

What makes the sQGP a Perfect
Liquid ?

What is the (color) structure of the
QGP near T¢ ?

At which scale does the transition
between weak and strong coupling
occur ?

How does the structure of colliding
nuclei manifest itself in the QGP ?
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Hot QCD matter properties ()

Which properties of hot QCD matter can we hope to determine ?

THV & E,p,s  Equation of state: spectra, coll. flow, fluctuations
c; = ap / 0€ Speed of sound: correlations
Ly
n= —Jd X<Txy ()T, (0)> : anisotropic collective flow
. 4rn’a.C,
— d Fa+l Fa+ O
0= - [dy (F)F™ (0)
.4
e="" CAS jdy 18 AT (y” )A“+(0)>>
N, - parton energy loss, jet fragmentation
. _4r’a,C, ahe ate
b= = Jay (F00)F ) |

mp = _blcllg}o|_x|ln<Ea (X)E” (0)> Color screening: Quarkonium states
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Theory

Hot QCD matter properties ()

Which properties of hot QCD matter can we hope to determine ?

E,pP,S

Equation of state: spectra, coll. flow, fluctuations

Speed of sound: correlations

n=— j d*x(T,(x)T,,(0))

T —
Easy for HY
LQCD
c; =dp /o€
. 4m’a,C,
1 N
. 4n’a C,
e =
N —
. 4r’a,C,
€ =
N
Easy for
LQCD xl—eo | x|

m,, = — lim lln(Ea(x)E“ (0))

L [dy (F ()R )
- [y (i A" (y)A™ (0)

= Jdy (F* () (0)

N

Vo

J

: anisotropic collective flow

parton energy loss, jet fragmentation

Color screening: Quarkonium states
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Hot QCD matter properties ()

Which properties of hot QCD matter can we hope to determine ?

T & ELp,S Equation of state: spectra, coll. flow, fluctuations
Easy for HY
LQCD
Q C; . ap | O€ Speed of sound: correlations
o
n= _Jd X<Txy ()T (O)> : anisotropic collective flow
. 4n’o.C, |
— d Fa+l Fa+ O
0= === [y (F )R )
e = 4r°0.C, Ja’y 18 A (y” )A“+(O)>>
N, - parton energy loss, jet fragmentation
., _4r’a,C, e e
b= - Jay (FOO)F <0>>)
sasyforl i, =~ lim —In(E‘(x)E‘(0)) | Color screening: Quarkonium states

LQCD xl—eo | x|
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Theory
] ] (C 5y
Elliptic flow "measures™nqp
Universal strong coupling limit of
Schenke, Jeon, Gale, PRL 106 (2011) 042301 non-abelian gauge theories with a
gravity dual:
n/s — 1/4n
Vo | | mmmnn "e=0 n/s=0
n/s = 1/4n aka: the “perfect” liquid
2 /s =2/4n
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Theory
Elliptic flow "measures™nqp
Universal strong coupling limit of
Schenke, Jeon, Gale, PRL 106 (2011) 042301 non-.abellan gauge theories with a
gravity dual:
n/s — 1/4n
Vo | | mmmnn "e=0 n/s=0
n/s = 1/4n aka: the “perfect” liquid
0.2
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v2 & vz @ LHC
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Shear viscosity

Song, Bass, Heinz, Hirano, Shen, PRL 106 (2011) 192301

| MC-KLN hydro (n/s) + UrQMD /s | MC-Glauber  hydro (n/s) + UrQM]i‘ ;\GS
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Conclusion: 1 <4nn/s <2.5

Remaining uncertainty mainly due to initial density profile

How far can we reduce the uncertainty ?
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Future refinements

10
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QLA
Future refinements

B Necessary improvements
E-by-E (3+1)-dim viscous hydro with cascade freeze-out.

Uncertainty check for 1o, EOS, and (.

10
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{QGELET
Future refinements

B Necessary improvements
E-by-E (3+1)-dim viscous hydro with cascade freeze-out.

Uncertainty check for 1o, EOS, and (.

®m Determination of transverse profile

Can CGC theory provide a firm prediction?
= Can we use d+Au collisions to constrain CGC approach?
= Are there theoretically founded alternatives?

10
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Future refinements

B Necessary improvements
E-by-E (3+1)-dim viscous hydro with cascade freeze-out.

Uncertainty check for 1o, EOS, and (.

®m Determination of transverse profile

Can CGC theory provide a firm prediction?
= Can we use d+Au collisions to constrain CGC approach?
= Are there theoretically founded alternatives?

®m Check of system independence
Cu+Cu, Cu+Au, U+U

= Very important to demonstrate theoretical control

10
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HQUELE
Event by event

Theory

Initial state generated in A+A collision is grainy
event plane # reaction plane
= eccentricities €1, €2, €3, €4, €tc. 0

t=0.4 fm/c

600

500

400

300
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200
100
0 = flows V1, V2, V3, V4,...
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HEBELE
Fluctuation spectrum

Can different distributions of various eccentricities in different collision systems be
used to discriminate between energy deposition models / theories?

Can the power spectrum of v, be used to determine n/s and Vsound ?

. ] . Staig & Shuryak, arXiv:1106.3243
6000 —
% 4000 — 0.001 |
3 ea_
3 3
2000 |— 0.0001 |
0k e
10 40 100 200 400 800 000001 &

Multipole moment I

...........................................................................................................................................................................

Analy3|s not reliable quantitatively (cs?2 = 1/3, schematic hydro)
but clearly shows the potential. =

Wednesday, October 19, 2011



HEBELE
Fluctuation spectrum

Can different distributions of various eccentricities in different collision systems be
used to discriminate between energy deposition models / theories?

Can the power spectrum of v, be used to determine n/s and Vsound ?

A 028 (e Staig & Shuryak, arXiv:1106.3243
Cu+Cu central | | ClEesp Au+Au
| 1 of semicentral
& - 0.001 -
0.0001
H. Petersen: UrQMD + 3-D hydro + UrQMD 0.00001 L

The RHIC advantage:
. We have many knobs to turn,not just a single universe to observe.

13
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Sources of fluctuations

14
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Sources of fluctuations

® [nitial-state fluctuations (quantum)

“Hot spots” (nuclear density fluctuations, color field fluctuations, etc.)

14
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Sources of fluctuations

® [nitial-state fluctuations (quantum)

“Hot spots” (nuclear density fluctuations, color field fluctuations, etc.)

®m Hydrodynamic fluctuations (statistical)

Finite particle number effects, instabilities

14
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v
Sources of fluctuations

® [nitial-state fluctuations (quantum)

“Hot spots” (nuclear density fluctuations, color field fluctuations, etc.)

®m Hydrodynamic fluctuations (statistical)

Finite particle number effects, instabilities

m Jet-medium interactions

Mach cones etc. (?)

14

Wednesday, October 19, 2011



AQBELEE
Sources of fluctuations

® [nitial-state fluctuations (quantum)

“Hot spots” (nuclear density fluctuations, color field fluctuations, etc.)

®m Hydrodynamic fluctuations (statistical)

Finite particle number effects, instabilities

m Jet-medium interactions

Mach cones etc. (?)

B Freeze-out fluctuations

Finite particle number effects, critical fluct’'s, spinodal decomposition

14
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Correlations

0.0008 >
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0.0004 "
0.0002;
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STAR Prellmlnary
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STAR Preliminary

Gaussian Width
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'/ \ B A'\_\\
j - % ‘T\ $ *

! narrow Gaussian
|

0 50 100 150 200 250 300 350

part

Driven by longitudinal correlation of initial-state density fluctuations or by thermal

density fluctuations during hydrodynamic phase ?
Are the vs correlations universal ?

Is there any interplay with high-pT phenomena?

15
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Parton energy loss

vfz

/ Elastic energy loss:

O %;i_q O Z,—f=—Czé q ?’ > q
4

Radiative energy loss:

q ?\? ? <>q .......................... Scattering —
A) A) " g & color charges
o
dE : |
5oCAL q=pledg s e (R o)

17
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Observables proliferate

Theorg
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Goals and questions

m Goals:
Determine medium properties (cA], e in NL Twist; .. ??)
Density tomography of the medium
Explore energy flow into, and response by, the QGP
Explore scale of transition from weak to strong coupling

19
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HEBALEM
Goals and questions

m Goals:
Determine medium properties (¢, € in NL Twist; ....?7?)
Density tomography of the medium
Explore energy flow into, and response by, the QGP
Explore scale of transition from weak to strong coupling

B Questions:
Momentum dependence of parton energy loss (PEL)
Density, length dependence of PEL
Color/flavor dependence of PEL
Redistribution of energy in jet cone (jr, z) versus ...
... flow of energy out of the jet cone

19
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The questions

20
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The questions

B How much energy/momentum does a fast parton (quark)
lose as a function of traversed distance L ?

20
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The questions

B How much energy/momentum does a fast parton (quark)
lose as a function of traversed distance L ?
® \What is the mechanism of energy loss ?

“radiative” = into non-thermal gluon modes
“elastic” or “collisional” = directly into thermal plasma modes

20
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(D I
The questions

B How much energy/momentum does a fast parton (quark)
lose as a function of traversed distance L ?

m \What is the mechanism of energy loss ?
“radiative” = into non-thermal gluon modes
“elastic” or “collisional” = directly into thermal plasma modes

®m \What happens to the lost energy and momentum ?

If “radiative”, how quickly does it thermalize = what is its
longitudinal momentum (z) distribution ?

What is its angular distrubution = how much is found in a cone
of angular size R ?

20
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(D I
The questions

B How much energy/momentum does a fast parton (quark)
lose as a function of traversed distance L ?

m \What is the mechanism of energy loss ?
“radiative” = into non-thermal gluon modes
“elastic” or “collisional” = directly into thermal plasma modes

®m \What happens to the lost energy and momentum ?

If “radiative”, how quickly does it thermalize = what is its
longitudinal momentum (z) distribution ?

What is its angular distrubution = how much is found in a cone
of angular size R ?

® How do the answers depend on the parton flavor ?

20
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Comparison of Jet Quenching Formalisms for a Quark-Gluon Plasma “Brick”

Nestor Armesto,' Brian Cole,? Charles Gale,” Willam A. Horowitz.*® Peter Jacobs®
Sangvong Jeon,* Marco van Leeuwen,” Abhijit Majumder,* Berndt Miller,®* Guang-You Qin® Carlos
A. Salgado,! Bjorn Schenke®:? Marta Verwedj,” Xin-Nian Wang,'%% and Urs Achim Wiedemann!®

arXiv:1106.1106

Wide differences confirmed
for standardized “QCD Brick”

MC schemes and NLO treatment of wide-
angle radiation required to reduce inherent
uncertainties (in progress).

~ 1
o v L=5fmE =20 GeV
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= ==+~ WHDG rad
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070" AMY rad
o
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= |
0.5 =
0.4F )
0.3: ~‘ ~ .
0.2F- L i
0.1} ) o ARG
| TErEIE ISP AR PR ._.1Nj'f"1‘ PR Sl ol o 2
0 0.5 1 1.5 2 2.5 3 3.52 4
q [GeV“/fm]

21
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Comparison of Jet Quenching Formalisms for a Quark-Gluon Plasma “Brick”

Nestor Armesto,' Brian Cole,? Charles Gale,” Willam A. Horowitz.*® Peter Jacobs®
Sangvong Jeon,* Marco van Leeuwen,” Abhijit Majumder,* Berndt Miller,®* Guang-You Qin® Carlos
A. Salgado,! Bjorn Schenke®:? Marta Verwedj,” Xin-Nian Wang,'%% and Urs Achim Wiedemann!®

arXiv:1106.1106

Wide differences confirmed
for standardized “QCD Brick”
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MC schemes and NLO treatment of wide-
angle radiation required to reduce inherent
uncertainties (in progress).
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Virtuality matters

Virtuality Q2 of the parton in the medium

controls physics of radiative energy loss:

Weak coupling scenario

RHIC: 20 GeV parton, L =3 fm

n E
gL=45GeV’ > o= 1.5GeV?

Virtuality of primary parton is
medium dominated and small
enough to “experience” the
strongly coupled medium

Q (L) = max(q L,z)

medium

vacuum

22
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Virtuality matters

Virtuality Q2 of the parton in the medium

controls physics of radiative energy loss:

Weak coupling scenario

RHIC: 20 GeV parton, L =3 fm

n E
gL=45GeV’ > o= 1.5GeV?

Virtuality of primary parton is
medium dominated and small
enough to “experience” the
strongly coupled medium

N
O°(L)= max(q L,—)
T L
medium T
vacuum

LHC: 200 GeV parton, L =3 fm

. E
gL=9GeV’ < zzl3 GeV’

Virtuality of primary parton is
vacuum dominated and only
its gluon cloud “experiences”
the strongly coupled medium

22
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Theory

Time after scattering: O° ~ E/L

Al

Q

" JE
Virtuality evolution |l

20

1.5

05

: E =20 GeV N E =200 GeV

\ (“RHIC”) (“LHC”)

: Y, 10

T

T S N R 6
L L

Final vacuum fragmentation: D(z,O*(L)) ”a

Strong coupling:

Virtuality is controlled by:

Scattering in medium: O~y T

10
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Theory
Parton shower in matter
Guangyou Qin & BM rad ,out
PRL 106, 162302 (2011) .- ¥ AL
= - - -
- = - - o AEI’-MJ"
=P . — -
- —
| Bl
v . T~ i
AEZOH AE;OII o ~ 3
Leading parton: ~

. . .. ~ broad
Transfers energy to medium by elastic collisions AE,
Radiates gluons scattering in the medium (inside and outside jet cone)

med

i , . dN?
E, (1) = E,(t,) - [ é,di - | odedk}dt

dexdk’ dt
Radiated gluons (vacuum & medium-induced):
Transfer energy to medium by elastic collisions
Be kicked out of the jet cone by multiple scatterings after emission
df,(@,k 1) :é%+lgv,§ P AN
dt oo 4~ °F  daodkldt

24
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Theory
Di-jet t

5 - Ll l Ll l L s l L ' T - L ' L ' L} l T ' . 5 4 v ' Ll l Ll ]’ L l' L) L) ' L) I Ll ] L I Al 4

® CMSPbPb0-10% 1 ® CMS Pb-Pb 10-20% - I ® ATLASPb-Pb0-10%| 1 ® ATLAS Pb-Pb 10-20%

~—— PYTHIA ~— PYTHIA ~—— PYTHIA ~—— PYTHIA

4| | === PYTHIA + medium <+ | |[= PYTHIA + medium -4 | wess  PYTHIA + medium wes PYTHIA + medium .
GYQin&BM| |

PRL 106 (2011)

162302
- 2

ATLAS and CMS data differ in cuts on jet energy, cone angle, etc; results
depend somewhat on precise cuts and background corrections.
Fits of CMS and ATLAS data require ~20% different parameters.

Several other calculations using pQCD physics input also fit the data.

General conclusion: pQCD jet quenching can explain these data.

N
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HQUELEN
Fragmentation

10° TGS Braiiminary 1T S Teaing e ';_"_";’;6"7;'\;"3
2 anti-k (R=0.3) PFlow Jets p.>4 GeVic ---- pp reference NE i
10 pt1> 100 GeV/c, p*'? > 40 GeVic ! ® Subleading Jet IL dt=
wn 10 b A0 > 2/3n — pp reference
ke, . :
2 1 bl :
S 10" PP Pbe 3
107 0 Leading Jet 30-100% | 0-30%  |°1
10° e Subleading Jet 5 E —3
b T A
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. . . . 2.5 . ‘ B
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. . 20 ® T E
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. . 15F 3 .
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Fragmentation
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: [o]Leading Jet
Leading and subleading jet in Q oF | » Subleading Jet| , |.
Pb+Pb fragment look just like S %t Ik
jets of corresponding energy o 1'5§L ‘ l : o] |
in pp collisions: the subleading o ‘j*? s3TEE +“$ """" STEE AT ]
jet loses energy, but appears 0.5¢ ;
otherwise unmodified. TR J25 335 4 4% ll: 051" l5 é 215151315 oY

& — n(p et Track) & - Track )

Nontrivial, because the fragmentation function depends on the maximal virtuality
CZ of the fragmenting parton, which is O(pT2) in pp, but in PbPb the virtuality of
the degraded parton after it exits the medium Q2 ~ max( gL, E/L) ~5-10 GeV-
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Future opportunities

Theory

Jet tomography: Study the structure of the matter using jet quenching.

This means selecting event samples with similar spatial structure, e.g.
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Future opportunities

Theory

Jet tomography: Study the structure of the matter using jet quenching.

This means selecting event samples with similar spatial structure, e.g.

0.2 — T s T el i g
0.15
0.1
> 0.05 ORI ERL - St
. ‘.\"I— - %
> -
7 A Sy i 2 T ..\":'-\‘ 9 4‘\:" T .l: . ~ .
00 3 ....."‘ ;_-‘7’_’..'".. R 1 -',\.-l & :.'.4,‘;:- ":.,..r " 5' ;
% 3 :
-0.05
0.1 1 A gt 1 A 1 1
0 1 2 3 4 5
b [fm]

>

02 = L] - L = 1 2, 1 = 1 it 1 e 1 - 1

Hannah Petersen

0.15 "
0.05
00 .‘ . \ L '.‘; ',':- LT AR I,_'.-:
-0.05 -
0.1 I R | 1 1 1 IS 1
0 1 2 3 4 5 6 7 8 9
b [fm]

27

Wednesday, October 19, 2011



(0 = S
Future opportunities

Theory

Jet tomography: Study the structure of the matter using jet quenching.

This means selecting event samples with similar spatial structure, e.g.
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(a) Pick events with large v2
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Future opportunities

Jet tomography: Study the structure of the matter using jet quenching.

This means selecting event samples with similar spatial structure, e.g.
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(a) Pick events with large v2

(b) Pick events with vo2 ~0
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Future opportunities

Jet tomography: Study the structure of the matter using jet quenching.

This means selecting event samples with similar spatial structure, e.g.
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Future opportunities

Jet tomography: Study the structure of the matter using jet quenching.

This means selecting event samples with similar spatial structure, e.g.

0.2 [y p———————— — 0.2 [y — ———————
. N Hannah Petersen
0.15 | s R 0.15 |
0.1} 0.1F
S 005 | = { i s NI gaE e b o
00 | Egitiatioaaeden 0
005 F b o i _ ¥ 3 .- _‘ 005 k- : e : X . J
-0.1 A g=teis 1 1 : 1 1 1 1 0.1 A Il - 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
b [fm] b [fm]
(a) Pick events with large v» (c) Pick events with large b

(b) Pick events with v2 ~ 0 and vz ~ 0

When we have the data to do this, can we really talk about performing
jet tomography !
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Theory
Flavor dependence
Raa of all hadrons (including D-mesons) appear to converge at ptr > 10 GeV.
:\?1'6?:;;‘RCP A’K "0' gZ_T T 1" L L B
EE 1.4f : ?i . K ] T 18  Po-Pb \5,=2.76 TeV + D°R,, 0-20% CC
*‘—;3'1.25_ / N\ v charged | 1.6¢ ] = D' Ry, 0-20% CC -
© " A ; 145 e %Ry, 0-20% CC
121 ALICE Preliminary =
1
0.8 —
0.6/ =
oaf- Jﬂ E
“r 0.2f —— {q
% 2 4 6 8 10 12 14 16 L i 6 8 0 214
p. (GeVic) P, [GeV/c]
Will this continue to be true for b-quarks ?7??
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Theory

Color screening

Lattice
QCD

1000 +

500 +

mp ~ gl

2
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Theory
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Theory
The real story...
...Is more complicated that just mp. Too 5 y a
Q-Qbar bound state interacts with lth\ R
medium elastically and inelastically! /.-‘
mp
— —_— g ‘
o Pyt P; i I ~21/T, mp~gT
=¥ oo =1 = Voo =5 o 711 | F o t ’ &

Akamatsu & Rothkopf, arXiv:1110.1203

w heavy-Q energy loss and Q-Qbar suppression cannot be separated

> need to understand contribution of endogynous recombination
can D-Dbar correlations be measured in Au+Au vs. p+p ?

» data on cold nuclear matter effects are important
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Challenges |

® [nitial conditions differ massively event by event and can
provide bountiful physics opportunities

® The E-by-E fluctuations can be utilized to
Probe properties of hot QCD matter via fluctuations
Select events with common properties

m Develop complete theory of fluctuations

® Extend measurement / analysis of fluctuations
Correlations between observables

Interplay between bulk fluctuations and jets (tomography!)....
m _../n both directions!
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Challenges I
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HQUELEE
Challenges I

B The theory of jet quenching is becoming quantitative
Development of pQCD based jet MC’s & NLO theory

Kinematic span RHIC — LHC is critical to model discrimination;

RHIC provides better medium-vacuum virtuality match
But: High-pt data from RHIC of similar quality will be needed
Interplay of jets and E-by-E bulk physics
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HQUELEE
Challenges I

B The theory of jet quenching is becoming quantitative

Development of pQCD based jet MC’s & NLO theory

Kinematic span RHIC — LHC is critical to model discrimination;
RHIC provides better medium-vacuum virtuality match

But: High-pt data from RHIC of similar quality will be needed
Interplay of jets and E-by-E bulk physics

m Heavy Quarkonia:

Quantitative theory of elastic and inelastic interactions with the
medium is emerging

High statistics measurements in d+A, A+A over wider kinematic
(esp. lower Ecm) are important to probe medium dependence

33
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Challenges Il
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Challenges Il

® The RHIC program needs detectors that combine
High data taking rate
Sophisticated (level-3) triggers
Large acceptance (= 41r)
Energy flow measurement capability (calorimetry)
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Challenges Il

B The RHIC program needs detectors that combine
High data taking rate
Sophisticated (level-3) triggers
Large acceptance (= 41r)
Energy flow measurement capability (calorimetry)

B The RHIC facility’s unique strengths include
High integrated luminosity
Collision system flexibility

34
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Theory challenges
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Theory challenges

B Understand the physics of strongly coupled liquid plasmas

What is the structure and dynamics of QGP near T; ?
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Theory challenges

B Understand the physics of strongly coupled liquid plasmas

What is the structure and dynamics of QGP near T; ?

B Adapt marriage of pQCD and LQCD to real-time phenomena
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Theory challenges

B Understand the physics of strongly coupled liquid plasmas

What is the structure and dynamics of QGP near T ?
B Adapt marriage of pQCD and LQCD to real-time phenomena

m Adapt holographic methods to real QCD

Most predictive for observables involving T, such as:
m Collective flow observables
" Fnergy-momentum related fluctuations and correlations
® Fnergy flow from jet into medium

35
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Theory challenges

B Understand the physics of strongly coupled liquid plasmas

What is the structure and dynamics of QGP near T ?
B Adapt marriage of pQCD and LQCD to real-time phenomena

m Adapt holographic methods to real QCD

Most predictive for observables involving T, such as:

m Collective flow observables
" Fnergy-momentum related fluctuations and correlations
® Fnergy flow from jet into medium

m Develop tools for massive data - complex model comparison
Needs precision data for hard (and rare) probes

Needs realistic models for hard probes in QCD matter
35
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Phases of exploration
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Q "

Phases of exploration

Discovery Phase

Smoking Gun

Phase Precision

Measurement
Phase
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"You know what I hate about this place?
The heavy quarks in the liquid I serve.”
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